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Abstract. In this paper we present the results obtained in the solution
of sparse and large systems of nonlinear equations by Inexact Newton-like
methods [6]. The linearized systems are solved with two preconditioners
particularly suited for parallel computation. We report the results for the
solution of some nonlinear problems on the CRAY T3E under the MPI
environment. Our methods may be used to solve more general problems.
Due to the presence of a logarithmic penalty, the interior point solu-
tion [10] of a nonlinear mixed complementary problem [7] can indeed be
viewed as a variant of an Inexact Newton method applied to a particular
system of nonlinear equations. We have applied this inexact interior point
algorithm for the solution of some nonlinear complementary problems.
We provide numerical results in both sequential and parallel implemen-
tations.

1 The Inexact Newton-Cimmino method

Consider the system on nonlinear equations
G(w) =0 G= (gla '"agn)T (1)

where G : R® — R™ is a nonlinear C' function, and its Jacobian matrix J(z).
For solving (1) we use an iterative procedure which combines a Newton and
a Quasi-Newton method with a row-projection (or row-action) linear solver of
Cimmino type [11], particularly suited for parallel computation. Here below,
referring to block Cimmino method, we give the general lines of this procedure.

Let As = b be the linearized system to be solved. Let us partition A into p
row-blocks: A;,i =1,...,p, i.e. AT = [A1, As,... , Ap] and partition the vector
b conformally. Then the original system is premultiplied (preconditioning) by

H, =[Af,... Af,...  A]] (2)

where A = AT(A;AT)! is the Moore-Penrose pseudo inverse of A;.
We obtain the equivalent system H,As = H,b,

P p
(Pl+...+Pp)s:ZA?_Ai3:ZA?_bi:Hpb, (3)

i=1 i=1



where for each i = 1,...,p, P, = A A; is the orthogonal projection onto
range(A7T). As A is non singular, the matrix H,A Y 7_, A A; is symmetric and
positive definite. Then the solution of (3) is approximated by the Conjugate Gra-
dient(CG) method. The ¢ (underdetermined) linear least squares subproblems
in the pseudoresidual unknowns J;

Aibip = (b;—Assg), 1<i<p (4)

must be solved at each conjugate gradient iteration (k = 1,2...).

Combining the classic Newton method and the block Cimmino method we
obtain the block Inexact Newton-Cimmino algorithm [11], in which at a major
outer iteration the linear system J(zr)s = —G(zx), where J(z*) is the Jacobian
matrix, is solved in parallel by the block Cimmino method.

In [12,4] a simple p-block partitioning of the Jacobian matrix A was used
for solving in parallel a set of nonlinear test problems with sizes ranging from
1024 to 131072 on a CRAY T3E under the MPI environment. The least squares
subproblems (4) were solved concurrently with the iterative Lanczos algorithm
LSQR.

In this paper (see in section 4) we adopt a suitable block row partitioning
of the matrix A in such a way that A;AT = I, i=1,...p, and consequently,
A} = AT. This simplify the solution of the subproblems (4).

Due to the costly communication routines needed in this approach we have
also implemented in parallel the preconditioned BiCGstab for the solution of the
linearized system. As the preconditioner we choose AINV [2] which is based on
the approximate sparse computation of the inverse of the coefficient matrix.

2 Inexact Newton method for nonlinear complementary
problems

The methods of section 1 may be used to solve more general problems as the
nonlinear mixed complementary problems [7] (including linear and nonlinear
programming problems, variational inequalities, control problems, etc.).

Let us consider the following system of constrained equations:

F(v,s,2) = (G(g’zsj)) 0 (s,2)>0 (5)

where G : R""*™ — R" is a nonlinear function of v, S = diag(s1,--- , sm),
Z = diag(z1,--- y2m), € = (1,...1)T. The interior point methods [10] for the
solution of (5) require the solution of the nonlinear system F(z) = 0. Using the
Newton method we have to solve at every iterations a linear system of the form

F'(z)Az = —F(z1) + orpreo (6)

where p = (s{ zk)/m, ok €]0,1], that is an Inexact Newton method [6].



An interior point method in which the linearized system is solved approx-
imately (by means of an iterative method) will be called inezact (truncated)
interior point method. In this framework system (6) becomes

F'(zx)Az = —F(xx) + onpireo + Tk (7)

where 7 is the residual of the iterative method applied to the linear system
satisfying ||rg|| < mepr, and ng is, for every k, the forcing term of the inexact
Newton method [6]. Global convergence is assured by means of backtracking [1].

3 Numerical results I (sequential)

We have applied the inezxact interior point methods for the solution of two non-
linear complementary problems: the (sparse) obstacle Bratu problem [5, 8], and
the (dense) Lubrication problem [9, 5].
3.1 The obstacle Bratu problem
This problem can be formulated as a nonlinear system of equations:

f(w) =21 — 22, Z1S1e=0, Z3S¢=0, sy =v—v, S2=v,—v, (8)
with the constraint s;,z; > 0, ¢ = 1, 2. The nonlinear function f(v) is defined as

f(v) = Av — AR2E(v)e, E(v) = diag(exp (v1),... ,exp (vn)),

where A is the matrix arising from FD discretization of the Laplacian on the
unitary square with homogeneous Dirichlet boundary conditions, v;, v, are the
obstacles and & is the grid spacing.

The system (7) at step k can be written as

B 0 0 -I1 Av —f + 21— 29 b
0 Z; 0 85 0 Asqy —Z1S1e + OplKe by
0 0 Z2 0 Sz ASg = —ZZSZC + Ok | = b3
—I1 0 0 O Az —81+v—1 by
I 0I 00O Az —89+ Uy — bs

where B = f'(v). Taking into account the simple structure of some of the block
matrices, we can use a Schur complement approach to reduce the original system
(5n x 5n) to a system with n rows and n columns. In this way we obtain a system
in the Av unknown only: CAv = r, where

C=B+87'Z1+8,'Zy, 7 =01+ 8 (ba— Z1by) — Sy (b3 — Zzbs).

Once this nonsymmetric system has been solved (we used the BiCGstab solver),
we can compute Az, Azy and Asy, Ass by:

Az = S;lzl(bg — by — A’U), Asy = by + Av



Azy = S;1Z2(b3 — by + A’U), Asy = by — Av.

We may note that matrix C is is obtained by adding to B the two nonnegative
diagonal matrices D, 17, and D;'Z, thus enhancing its diagonal dominance.
The algorithm has been tested for different grids h = 1/32,1/64,1/128 with val-

Table 1. Results obtained with the inezact interior point Newton method for the obsta-
cle Bratu problem with three different mesh sizes and four values of A (nl= nonlinear,
it= iterations, s=seconds on a 600 Mhz Alpha workstation).

16384| 15 1779  36.21 0.34762E-08
16384 14 1700  34.46 0.30286E-09
16384| 14 2021  40.68 0.79480E-09

A n|nl it. tot lin it. CPU (s) [l H||

1| 1024| 13 397 0.24 0.12371E-09
4| 1024, 11 335 0.23 0.21711E-08
6| 1024| 12 374 0.25 0.13904E-12
1| 4096| 14 873 2.61 0.12668E-08
4| 4096| 13 828 2.56 0.13289E-10
6| 4096| 12 840 2.57 0.44356E-11
1

4

6

ues of n = 1024,4096, 16384, respectively, for different values of A = 1,4, 6,10.
The initial vectors for the experiments are v(®) = s(0) = 2(0 = [1,... /1] with
the obstacles v; = [0,...,0]T,v, = [4,...,4]T. For the last A\-value we reported
a failure since a number of backtracking larger than the allowed maximum (=5)
have been recorded. Actually, for A > 6.8 the algorithm did not achieve conver-
gence (this result is well documented in the literature, see [8]). The sequential
results for the cases A = 1,4, 6 are reported in Table 1. The CPU times refer to
the computation on a 600 Mhz Alpha workstation with 512 Mb RAM.

3.2 The Lubrication Problem

A very difficult problem from the point of view of nonlinearity is represented by
the Elastohydrodynamic Lubrication Problem [5] which consists of two integral
equations coupled with a differential equation — the Reynold’s equation. Given
the parameters o, A and an inlet point x,, find the pressure p(z), the thickness
h(z), the free boundary z; and the variable k satisfying:

2 [
h(a:):a:2+k—;/ In|z —s|ds in [z4,00)

a

3 Tp
4 <h (z) d_p) = )\dh in [z4,zp), E/ p(s)ds=1
™ z

dz e? de) “dz

a

d

with the free boundary conditions p(z,) = 0 and p(z) = iz zp) = 0. The

discretization of this problems yields a highly nonlinear and dense system of



equations. We solve the linearized system with a direct method (Lapack rou-
tines). In Table 2 we show the results obtained with the inezact interior point

Table 2. Results obtained for the Lubrication Problem with the inezact interior point
Newton method with a = 2.832, A = 6.057.

n nl it. CPU (s) Jacobian LU factor LU solver [ETHE
200| 14 1.30 0.61 0.28 0.01 0.18840E-06
1000( 19 69.41 20.75 35.59 0.68  0.13107E-06

Newton method with a = 2.832, A = 6.057 using n = 200 and n = 1000 points
of the discretization of the interval [—3,2]. The initial vector is chosen as

3 Zo + hi 5
$§0)24_<1_7|a2 |), h=—

From the table we note that the major part 10
of the computation is represented by the
construction and factorization of the Jaco-
bian matrix. This suggests that a Quasi-
Newton approach may drastically reduce
the CPU time of a single iteration. In
Figure 1 the nonlinear convergence profile
is provided, showing the superlinear rate 10 |
of the convergence of the Inexact Newton
method. Figures 2 and 3 display the plots
of the film thickness and the pressure, re- ‘ ‘ ‘
spectively. They compare well with the re- 0 5 10 15 20
sults of the literature [9]. tereton #

residual norm

Fig. 1. Convergence profile
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4 Numerical results II (parallel)

4.1 Parallel results for nonlinear problems

In this section we show the results obtained in the solution of the nonlinear
system (1) applying the Newton-Cimmino method. As we mentioned above at
the end of section 1, to overcome the problem of the costly solution of the least
square subproblems (4), we adopt a suitable block row partitioning of the matrix
A in such a way that A4;AT = I, i = 1,...q, and consequently, A} = AT.
This partitioning [11] is always possible for every sparse matrix and produces a
number q of blocks A; whose rows are mutually orthogonal. The numerical results
of Table 3 were obtained on a CRAY T3E under the MPI environment for two
sparse problems (also solved in [12, 4] adopting a simple block partitioning, using
the iterative algorithm LSQR), which arise from Finite Difference discretization
in the unit square (2 of the following PDEs:

ud

S 1+a? 42
2. Bratu problem [8] —Au—2Xe*=0 in 2, X€eR, + b.c. (10)

1. Poisson problem  —Au =0 in {2, + bec. (9)

The linear system is solved using a tolerance e = 10~° while the Newton it-
eration stops whenever the relative residual norm is less than €5 = 10~%. From

Table 3. Time (in seconds), speedups Sp = T1/Tp, number of outer and inner iterations
knewT, kce, obtained for solving the two test problems, using the row-orthogonal
partitioning on a CRAY T3E under the MPI environment.

Poisson problem

n = 4096 p=1 p=2 p=4 p=8 p=16
Time (speedup)| 7.22(|5.74 (1.3)(5.79 (1.3)|6.05 (1.2)|6.83 (1.1)
knewr 2 2 2 2 2
kce 1123 1123 1123 1123 1123

Bratu problem

n = 4096 p=1 p=2 p=4 p=8 p=16
Time (speedup)| 6.70|(5.11 (1.3)|4.96 (1.4)|5.33 (1.3)|8.01 (0.8)
knewr 4 4 4 4 4
kce 630 630 630 630 630

Table 3 we can see that the speedups are not completely satisfactory, reaching
the maximum value of 1.4 for p = 4 processors. This fact is mainly due to the
cost of the communication routine MPI_ALLREDUCE which performs the commu-
nication of the local pseudoresiduals and their sums on every processor. This
operation is costly, and its cost increases with the number of processors.



A most effective parallel solution was obtained with the use of a standard
Krylov method with AINV as a preconditioner [2]. AINV is based on the in-
complete construction of a set of biconjugate vectors. This process produces two
triangular factors Z and W and a diagonal matrix D so that: A~ ~ ZD W7,
Therefore, application of the preconditioner consists in two matrix-vector prod-
ucts and a diagonal scaling. These matrix-vector products have been parallelized
exploiting data locality as in [3], minimizing in this way the communication
among processors. The incompleteness of the process is driven by a tolerance
parameter £. Previous (sequential) experimental results show that a choice of
¢ € [0.05,0.1] leads to a good convergence of the Krylov subspace methods,
very similar to that obtained using the ILU preconditioner. In our test cases we
choose ¢ = 0.05.

In Table 4 we show the results when BiCGstab is employed as the linear solver
using both AINV and the diagonal scaling (Jacobi) as the preconditioners. The
CPU time on p processors (T},) is measured in seconds on a CRAY T3E. From
the results we note that for the small problem (n = 4096), as expected, the
speedups S, are not very high. However, for the n = 65536 problem they reach
a value of 19 (AINV) and 21 (Jacobi) on 32 processors. Note that in all the
runs the CPU time needed by AINV is less than the one required by Jacobi.
Moreover, the AINV preconditioner shows a degree of parallelism comparable
with that of the diagonal scaling.

Table 4. Results obtained on the CRAY T3E for the Bratu problem employing the
AINV and Jacobi preconditioners.

AINV(0.05) Jacobi

n| p Tp, nl lin Sp Tp nl lin Sp

1| 074 3 57 - 092 4 134 -

2| 047 3 57 158 | 0.57 4 133 1.61

4096 | 4| 033 3 57 224 | 042 4 135 2.19
8| 025 3 57 296 | 0.33 4 134 2.78

1| 5.06 3 107 — | 5.46 4 243 -

2| 2.82 3 107 1.79 | 3.32 4 268 1.64

16384 | 4| 1.563 3 107 3.31 | 1.82 4 270 3.00
8| 0.90 3 107 5.62 | 1.17 4 266 4.67

16 | 0.61 3 107 8.29 | 0.74 4 257 7.38

1| 40.75 4 224 — | 41.56 4 497 -

2| 21.02 4 223 1.93 | 20.42 4 479 2.03

65536 | 4 | 11.00 4 225 3.70 | 13.31 5 582 3.12
8| 579 4 224 7.03| 5.76 4 462 7.21

16 | 3.48 4 224 11.70 | 3.24 4 466 12.82

32 | 215 4 219 18.95 | 2.05 4 493 20.27




4.2 Parallel results for nonlinear complementary problems

As in section 4.1, we also solved in parallel the obstacle Bratu problem (8) via the
inezact interior point method, using the BiCGstab method as linear solver with
AINV and Jacobi as preconditioners. In Table 5 we show the results obtained.
The same considerations of section 4.1 hold, even with larger speedup values.

Table 5. Results obtained on a CRAY T3E for the obstacle Bratu problem employing
the AINV and Jacobi preconditioners.

AINV(0.05) Jacobi

n| p T, nl lin S, T, nl lin S,

1 5.30 14 402 - 5.82 14 946 -

2 2.96 14 405 1.73 3.23 14 938 1.76

4096 | 4 1.69 14 400 2.75 1.99 14 941 2.60
8 1.05 14 400 3.89 1.23 14 948 3.69

16 0.73 14 403 4.83 0.92 14 943 4.72

1| 41.66 15 823 - | 46.05 15 1959 -

2| 21.56 15 820 1.93 | 24.11 15 1943 1.91

16384 | 4| 11.10 15 795 3.75 | 13.12 15 1967 3.51
8 6.21 15 819 6.71 7.13 15 1968 6.46

16 3.75 15 828 11.11 4.43 15 1970 10.40

32 2.56 15 821 16.27 2.88 15 1950 15.98

1| 321.32 16 1688 — | 346.82 16 4026 -

2 | 162.25 16 1651 1.93 | 180.30 16 4022 1.92

65536 | 4 | 84.64 16 1676 3.79 | 94.47 16 4022 3.67
8 | 50.22 16 1672 6.39 | 51.39 16 4046 6.74

16 | 24.31 16 1706 13.21 | 28.28 16 4043 12.26

32 | 14.04 16 1675 22.88 | 15.05 16 4027 23.04

5 Conclusions and future topics

In this paper we experimented that the Inexact Newton method performs well in
solving nonlinear problems and mixed nonlinear complementary problems both
in sequential and in parallel computations. We adopted two different parallel
preconditioners in the iterative solution of sparse problems: the row-action Cim-
mino method [11] and the incomplete inverse AINV [2]. While the latter obtains
good results (speedup values up to 23 with 32 processor), the former heavily suf-
fers for the overhead due to the MPI communication routines. Future work will
address the parallel implementation of an Inexact Quasi-Newton interior point
method applied to the solution of mixed nonlinear complementary problems.
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