Parallel Newton methods for sparse systems of
nonlinear equations

GIOVANNI ZILLI and LUCA BERGAMASCHI

Abstract

In this paper we give the results found in solving consistent sparse systems of
nonlinear equations by an inexact Newton and Quasi-Newton method both
combined with a block iterative row-projection linear solver of Cimmino-
type. A simple partitioning of the Jacobian matrix was used for solving two
nonlinear test problems, that is a tridiagonal problem of size n = 131072 and
a nonlinear Poisson problem with n =1 x [grid with [up to 64. The results
are obtained on the CRAY T3E installed at CINECA (Bologna, Italy) with
32 nodes. The Fortran code runs under MPI implementation.

1 Introduction

We are interested in the numerical solution of a system of nonlinear equations
F()=0 F=(f1,fa)" (1)

where F : R" — R™ is a nonlinear C' function, and its Jacobian matrix J(x) is
sparse and n is large, by an inexact Newton and Quasi-Newton method combined
with a block iterative row-projection linear solver of Cimmino-type (truncated or
inexact versions, in the sense of 3], [4]).

This paper is the continuation of [12] where some preliminary results were found.
We will shortly outline the block iterative method of Cimmino-type. For more
information, convergence results and references see [1], [2] and [10].

Let us consider the linear system Ax = b where A is n X n sparse, generally
unstructured, matrix. Partition A into p row blocks : AT = [A1, Ag,..., A,],
where 1 < p < n, and partition the vector b conformally. The row projection
algorithm can be derived noting that the i** block of equations A;z = b;, where A;
is m x n matrix, with rank(A;) = m, and m < n, defines a linear manifold and the
vector solution z is the intersection point of the p manifolds. The system A;x = b;
is underdetermined and has infinitely many solutions. We are interested in the
minimum norm solution, that is, the (unique) vector z* € R(AT). For 2 € R™, we
have z* = ATz, therefore A;AT2 = b; and 2* = A]b;, where A} = AT(A4;AT)!
is the Moore-Penrose pseudo-inverse of A;. From the usual decomposition:

applying the Richardson method, zr41 = xk + rr where r; is the residual vector,
to the (equivalent) preconditioned system of linear equations H Ax = Hb, where

H=[A},...,Af, ..., Af],

ie. Y8 At A;x =" | Atb we find the iterative scheme:
P P
Thyl = Tk + W Z A;‘_ (b, — A,.’Ek) =T +w Z (Si,k (2)
i=1 =1

w € Rt being an acceleration parameter. The p pseudo-residual vectors d; , =
AF (b; — Aizy) (and the orthogonal projections onto the manifolds) can be calcu-
lated and then added, so the algorithm works well with parallel computers.

Let D be the diagonal matrix extracted from A4; A7 i.e. :

D = diag(|la1[[3, [laz[3, - - -, [lam|[3) 3)

where a,, 1 < r < m, is the r** row of A;. If we take the relazation matriz
® = w(A4;AT)~! equal to a diagonal matrix defined by ® = w D~1, where D is
the diagonal matrix defined in equation (3), the iterative row-projection method
described in equation (2) includes Kaczmarz’s method in the extreme case p =n
(n blocks of a single row), and Cimmino’s method in the case p = 1 (a single block

of n rows). For p =1, with A an m X m matrix, we get

gD = g At (b - Aa:(k)) 2™ 4 AT(w (AAT)Y) (b - Ax(k))

z® + AT® (b - Aw(k)) =g® 4 ATy D™ (b — A.ZL‘(k)) .

2m

For w = mih we retrieve the original Cimmino method
Zh:1 Mh
2 = by — {an, =¥
PSSO o mp a7
2 lan |3
>
h=1
. . 1 - 2
A particular case is with m, = — — Z mp=1 w=—.
m m

h=1
Convergence to the minimum norm solution is obtained under the assumption
that b € R(A), (9 € R(AT), and 0 < w < 2/p(E), (0 < w < 2), where p(FE) is the
spectral radius of the matrix E = Y% | Af A;. The convergence rate can be slow
even with the optimal parameter w. Since the sum of the orthogonal projectors
- AfAi is a symmetric positive definite operator, conjugate gradient accelera-
tion (C.G.) can be used to solve the preconditioned system HAz = Hb, (w = 1).
The p linear least squares subproblems (underdetermined) in the pseudoresidual
unknown J;
Aibip = (bs — Azr), 1<i<p

must be solved at each conjugate gradient iteration. To facilitate the construction
of the matrices (4; AT)~!, suitable partitionings of the matrix A may be adopted.
This would allow to simplify the solution of the least squares subproblems at
each step of the inner iteration. In this paper, the natural partitioning was used,
according to which each matrix is partitioned into p (1 < p < n) almost equal-
sized blocks A; of size m; X n, with Ele m; = n. Then we solve concurrently
the p linear least squares subproblems with the iterative Lanczos algorithm LSQR
[8]. Some limitations in terms of speedup efficiency were detected with this solver
(see in the section 3), in that it is an essentially sequential procedure, except the
BLAS2 kernels (sparse mat-vet). In order to increase the speedup efficiency of the
procedure, experiments with other partitionings (see [10]) and solvers (the sparse
QR solver [7]) are presently under investigation.

2 The inexact Newton methods

Now let us turn to the equations (1). Combining the inezact Newton method [4]
and the block Cimmino method of section 1 we obtain the block inexact Newton-
Cimmino algorithm (see also [11], [12]), in which at a major (Newton) iteration &,
the linear system

J(z) 2z = —F(xp) Tht1 = Tk + 2k, (4)

where J(z*) is the Jacobian matrix, is solved in parallel by the block Cimmino
method with the p partitioning JT = [J1,Ja,...,J,], FT = [F1, B, ..., Fp].
The outer exit test is based on the relative residual:

|1E' ()|l < e [1F(zo)l- ()

The inner iteration (C.G.-Cimmino), runs up to a value my such that for the
relative residual the following inequality is retained: ||rg m|l < e2||F(zx)||. The
LSQR solver also stops at iteration i,, » = i when a relative residual test with a
tolerance e3 is verified. These choices may be problem-dependent, [4], [9]. Relative
to the inexact Newton method, in [4] it is proved that the method has a local,
linear convergence in an appropriate norm, and it may converge superlinearly or
even quadratically under convenient assumptions.

Following [12], we may also use the block Cimmino method as an inner solver in
an inexact Quasi-Newton method for solving (1). This allows us to solve the inner
linear systems with the same coefficient matrix A (= J(zx) = J(zg), for every
k) at every outer iteration k. For this purpose we consider the following inexact
Quasi-Newton Cimmino method.

Quasi-Newton methods obey the formulae

Bz, = —F(z1) Th41 = Tk + 2k,

where the matrix B(xy) is an approximation to the Jacobian matrix J(zy) chosen
in such a way to satisfy the secant equation

Bryize =yr yr = F(2ry1) — F(ar)-

According to the Broyden secant update

- B T F T
By = Bp + (@x = Brz Tka)zk— = By + 7(“;1)216 , By = J(x0),
2j, Rk 2 Rk

by induction, it becomes

.’L' +1
Brt1 =By + Z J

zzJ

At iteration k we have

o7
By + Z z % 2z = —F(xp).

We obtain the step zj as

k—1 -1
-B F(.’E 1) _
2K = Z —0 =/ T ks Z]TZk + [—BO IF(.’L'k)] . (6)
=0 J

Finally, we solve the linear equations

T 1
. mZ = F‘”J“)z-zk=z?’(—BalF<wk>)-

J

in the unknowns ¢; = 2z, for 0 < i < k — 1. Hence the step zj is obtained
according to the equation (6). We note that at each outer iteration k the coef-
ficient matrix of this system is obtained simply by bordering the previous one.
Moreover the vectors z; and By ' F(z4), i.e. the vectors {(20,21,---,2r 1)} and
{(By 'F(z1),...,By 1F(:z:k))} are stored. These last vectors are calculated in par-
allel, by solving a linear system of size n with the row-projection Cimmino method.

As in the inexact Newton case [4], it can be proved [13] that the method has

a local, linear convergence in the norm ||z||ga = VT H Az, and it may converge
superlinearly too.

3 Computational aspects and numerical tests

The two procedures have been tested with the following nonlinear sparse problems
F(z) = (fi,., f2)T =0
1. Broyden tridiagonal problem [5], with h a real parameter:

fi(z) = (83— hz1)z1 — 2220+ 1 =0,

filx) = —zi-1 +(3—hzi)z; — 22141 +1=0, i=2,...,n—1,

fo(®) = —zpn_1+ (83— hxn)zn +1=0.

2. Poisson problem, obtained by application of the finite difference method to the
two-dimensional boundary problem:

Ay = <z<Ll1 0<y<1
U 1+$2+y27 _'Z._7 _y ?
u(0,y) = 1, u(ly) =2—¢, 0<y<1,
U(.TC,O):]., u(w,1)=2—ez, OS:CS]-;

by discretizing the equation by the 5-point formula on a [x [grid with a total
number of unknowns equals to n = [x [. The resulting linear system is, as we
know, a tridiagonal [-block system with every [-blocks of size [.

To ensure that each processor does the same amount of work, the Jacobian matrix
is partitioned into p almost equal-sized blocks, where p = 1, 2, 4, 8, 16 and 32,
according to the number of processors used.

The p blocks partitioning is described in Table 1, relative to the tridiagonal prob-
lem with n = 131072, and in Table 2, relative to Poisson’s problem with | = 64
(and n = 4096). The results are obtained on the CRAY T3E installed at CINECA

MATRIX | N =131072 (=2 |
p=1 131072 (n1 = 393214)

p=2 65536 (n1 =196607, n, =196607)

p=4 32768 (n1 =98303, ng =98304, n1 =98303)
p=8 16384 (ny =49151, ny, =49152, ny = 49151)
p= 16 8192 (ny =24575, ny = 24576, ny = 24575)
p= 32 4096 (ny = 12287, n, = 12288, ny = 12287)

Table 1: Number of rows of every block of the partinioning on each of the p
nodes and number n; of non-zero elements (in parentheses) on the first and last
nodes, and number ny on the remaining (p — 2) (with p > 2) intermediate nodes
respectively, relative to the tridiagonal problem with N = 131072.

(Bologna, Italy). The Fortran code runs under MPI implementation. We show
the results obtained on a maximum of 32 processors.

1. Results for the tridiagonal problem

The results found with the inexact Newton and Quasi-Newton methods are sum-
marized in Tables 3 and 4, respectively. The test parameters used are: h = 2, xg =
(=1,...,—1)"". The time refers to the iterative part of the code: Newton outer
iterations with updating of the Jacobian matrix (for inexact Newton case only)
and the right hand side vector. At each nonlinear iteration k, mj Cimmino iter-
ations are performed, each of them essentially consisting of a conjugate gradient
procedure in which the pseudoresiduals d; 1, are concurrently computed by i, LSQR

MATRIX | | = 64 [N =1x1=409 |

p=1 1 l-blocks | 4096 (n; =20224)
=2 1/2 Iblocks | 2048 (n; =10112, n; =10112)
=4 1/4 Tblocks | 1024 (ny =5024, nz =5088, n; =5024)

p= 28 1/8 Iblocks | 512 (n; =2480, n, =2544, n; =2480)
p= 16 1/16 L-blocks | 256 (nq =1208, ny =1272, n; =1208)
p= 32 1/32 1-blocks | 128 (n; =572, ny =636, n; =572)

Table 2: Number of rows of every block of the partinioning on each of the p
nodes and number n; of non-zero elements (in parentheses) on the first and last
nodes, and number ns on the remaining (p — 2), (with p > 2) intermediate nodes
respectively, relative to the two grids of the Poisson problem of size N =1 x [.

iterations. The sparse Jacobian matrix is stored by row, according to the com-
pressed sparse row (CSR) format. From Tables 3 and 4, where the elapsed time
for BLAS routines called by LSQR are also given, we can see that the consumed
time of the algorithm is essentially due to the LSQR solver. This will be repeated
in all experiments.

The key to our procedure to be successful relies mainly on the sparse solver of
the underdetermined system of linear equations. From Tables 3 and 4 we see that
only the sparse matvet routine (BLAS2 kernel) gives the expected speedup, while
BLAS]1 kernels of length n are to be parallelized further on.

We note now that the parallelism of the whole algorithm depends essentially
on the performance of the linearized system solver, at every nonlinear iteration.
Therefore the speedup obtained with only one nonlinear iteration does not change
whatever linear iterations the Newton method requires to achieve convergence. For
this reason we show here the parallel performance of the block Cimmino method
when applied to a linear test problem Az = b, where A is the nonsymmetric sparse
SAMEH matrix. It is obtained by a 5-point finite difference discretization of the
following PDE:

—Ugz — Uyy + 1000 €Y (uy —uy) =g, u==x+y,

on a 64 x 64 grid. The symmetric part of A4 is not positive definite. It is known (see
[6], [10]) that the restarted Krylov subspace methods stagnate or fail to converge
with this problem. Instead, convergence is attained by the CG accelerated block
Cimmino method. The right hand side is chosen so that the solution is z =
(1,2,...,n)T. Starting from a zero initial guess, we stop the iterations as soon
as the relative residual norm ||rn,||/||ro|| is smaller than a prescribed tolerance
€2. Taking advantage of experiments on the convergence of the two nonlinear
problems, we could set the tolerance €5 to a not too small accuracy (g2 = 1073
in our test). On the contrary, the LSQR routine has to accurately solve the
underdetermined subproblems and so we set 3 = 10712, The results are shown in

| N=131072 | p=1 p=2] p=4] p=8] p=16] p=32]
Time 126.2 (1) | 79.4 (1.6) | 58.6 (2.2) | 47.5 (2.7) | 42.2 (3.0) | 40.6 (3.2)
kit 4 4 4 4 4 4
my, it. 2 2 2 2 2 2
ir it 30 30 30 30 30 30
WE@IL 1 Ha0-6) | 010-%) | 0@10-¢) | 0106 | 0@10-%) | 0(10-%)
|| (o)]
LSQR 1227 76.9 56.2 45.0 39.8 37.9
97% 97% 96% 95% 94% 93%
Blas 1 57.3 42.1 36.0 31.9 30.3 29.5
47% 55% 64% 71% 76% 78%
Blas 2 59.6 29.0 14.5 7.3 3.7 1.9
49% 38% 26% 16% 9% 5%
Speedup 1 14 1.6 1.8 1.9 1.9
(Blasl)
Speedup 1 2.0 4.1 8.0 15.7 30.0
(Blas2)

Table 3: Time (in seconds) obtained with p = 1, 2, 4, 8 | 16 and 32 nodes, for
solving the tridiagonal problem with N = 131072 (= 2'7) on Cray T3E with
the Inexact Newton-Cimmino method, with kyna.x = 20, my = 2, ix = 30 and
g1 =107, g5 = 1073,e3 = 1072, Speedup values are given in parentheses. Time
(and percentages) spent due to LSQR routine and the Blas routines are also given
(their percentages are referred to LSQR. time).

Table 5. From this Table it is worth noting that with p = 1 the Cimmino method
acts as an ezact preconditioner applied to n X n problem and hence the solution is
attained just at the first iteration (with ¢ = 2258 LSQR iterations). With p > 2,
the number of Cimmino iterations may increase largely, causing a corresponding
worsening of the CPU time. In particular this happens with problems involving
the Laplace equation for which it is known that the conditioning requires many
C.G. iterations (as we will see, this also occurs with the Poisson test problem).
It is therefore reasonable to evaluate the performance of the parallel Cimmino
method with respect to the 75 CPU time (p = 2). The speedups reported in Table
5 are consistently computed as S, = T,/T>, p > 2. The promising speedup values
shown in the table account for the fact that both the numbers of LSQR iterations
and the CPU time which they require, decrease with growing p, opposed to an
increasing number of Cimmino iterations necessary to solve the underdetermined
subproblems. This behaviour is summarized in Table 5 by the number of LSQR
iterations which are shown to decrease, starting from the p = 2 case on. We finally
note that with 8 processors, we obtain a total CPU time which is also less than
the p =1 CPU time.

| N=131072 | p=1 p=2] p=4] p=8] p=16] p=32]
Time 147.2 (1) [94.4 (1.6) | 69.2 (2.1) [57.2 (2.6) | 51.2 (2.9) | 48.8 (3.3)
kit 5 5 5 5 5 5
my, it. 2 2 2 2 2 2
ir it 30 30 30 30 30 30
WE@IL 1 Ha0-6) | 010-%) | 0@10-¢) | 0106 | 0@10-%) | 0(10-%)
|| (o)]
LSQR 142.6 90.3 65.2 52.7 473 44.4
97% 96% 94% 92% 92% 91%
Blas 1 66.6 49.2 414 37.3 36.0 35.2
47% 54% 63% 71% 76% 79%
Blas 2 68.9 34.4 17.0 8.6 4.4 2.3
48% 38% 26% 16% 9% 5%
Speedup 1 14 1.6 1.8 1.9 1.9
(Blasl)
Speedup 1 2.1 4.1 8.2 16.2 314
(Blas2)

Table 4: Time (in seconds) obtained with p = 1, 2, 4, 8 | 16 and 32 nodes, for
solving the tridiagonal problem with N = 131072 (= 2'7) on Cray T3E with the
Inezact Quasi Newton-Cimmino method, with kya.x = 20, my = 2, i = 30 and
g1 = 107,65 = 1073,e3 = 107 !2. Speedup values are given in parentheses. Time
(and percentages) spent due to LSQR routine and the Blas routines are also given
(their percentages are referred to LSQR. time).

If we turn now to the inexact Newton tridiagonal problem we find that if we fix
€1 = 0(10712), the number k of outer iterations occurring to fulfill the exit test (5)
increased (of one iteration) on passing from p = 1 node to p > 1 nodes. Therefore,
for a correct speedup comparison and to estimate the degree of parallelism of the
method, we fixed &7 = O(10~°) obtaining an equal number of outer iterations k
for every p.
From Tables 3 and 4 we can see that £k = 4 and k = 5 outer iterations occurred
to achieve the exit test. In both the tables m; = 2 inner iterations occurred to
achieve the inner exit test with 5 = O(107%) and i, = 30 LSQR cycles for every
p (with e3 = 0(107?) = O(10712)).
From the two Tables we can also see that the speedups obtained with the Inexact
Quasi-Newton method are roughly the same as in the Inexact Newton method.

2. Results for the Poisson problem

For comparison with the linear test problem, we restricted ourselves to test a
problem of size N = 4096, relative to a grid of n =1 x [nodes, I = 64. The test
parameters were g1 = 1072, g5 = 1074, £3 = 107!2, starting from an initial guess
zo = (=1,...,—1)T. We see that only k = 2 outer iterations occurred with both

N=4096 | p= p=2 p=4 p=2_8 p=16 p=32
Time 274 || 74.8 (1) | 42.6 (1.8) | 23.7 (3.2) | 17.5 (4.3) | 12.6 (5.9)
m it. 1 28 45 64 90 127
1 it. 2258 384 211 118 73 38
m X i 2258 10740 9481 7542 6569 4843
rmll 1 g3 10-3 10-3 10-3 10-2 10-2

lIoll
LSQR 27.3 74.6 42.3 23.3 16.1 11.6
99.9% 99.8% 99.7% 99.2% 96.3% 96.1%
Blas 1 9.8 32.4 23.4 15.3 11.5 8.9
36.3% 44.0% 55.2% 64.5% 72.5% 77.1%
Blas 2 16.3 37.6 14.8 4.9 2.0 0.7
60.1% 49.9% 35.3% 22.5% 11.6% 6.0%

Speedup 1 14 2.1 2.8 3.6

(Blasl)

Speedup 1 2.5 7.6 19.2 54.4

(Blas2)

Table 5: Time (in seconds) obtained with p = 1, 2, 4, 8 , 16 and 32 nodes, for
solving the linear nonsymmetric problem of size N = 4096 with partitioning into
p blocks of rows of the same dimension N/p, with the row block Cimmino method.
Speedups values (with respect to T>-time) are reported in parentheses. Time (in
percentages) spent due to LSQR routine and the Blas routines are also given (their
percentages are referred to LSQR time). Moreover, the number of outer m, the
inner i iterations performed at each step and the overall number of LSQR iterations
are shown, with g5 = 1073, g3 = 10712,

the methods to achieve the exit test. Therefore the two methods took the same
time and an equal number of iterations. In fact, the inexact Quasi-Newton scheme
should be tested with most difficult problems with respect to the evaluation of the
Jacobian matrix, in order to show computational advantages with respect to the
inexact Newton approach.

The results are summarized in Table 6. From the Table we shortly see that the
remarks on the parallel performance already made for the linear problem are still
valid.

References

[1] Arioli, M., Duff, 1., Noailles, J., and Ruiz,D., A block projection method for
sparse matrices, Siam J. Sci. Stat. Comput. 13 (1) (1992) 47-70.

[2] Bramley R., and Sameh, A., Row projections methods for large nonsymmetric
linear systems, Siam J. Sci. Stat. Comput. 13 (1) (1992), 168-193

N=4096 | p=1 p=2 p=4 p=2_8 p=16 p=32
Time | 100.8 || 2120.7 (1) | 1521.8 (1.4) | 702.1 (3.0) | 311.8 (6.8) | 159.8 (13.3)
k it. 2 2 2 2 2 2
my it. 1 89 212 303 391 525

i it. 4276 1715 813 372 161 68

my X iy 4276 165400 176960 113920 62841 35428

1F (i)l -3 -3 ~3 -3 -3 -3

F ()] 10 10 10 10 10 10
LSQR 100.7 2116.5 1517.2 690.2 301.2 150.4

99.9% 99.8% 99.7% 98.3% 96.6% 94.1%

Blas 1 35.2 908.0 831.4 450.0 217.2 114.3
1 35.0% 42.9% 54.8% 65.2% 72.1% 76.0%
Blas 2 61.8 1081.5 541.7 149.1 36.5 9.6
61.4% 51.1% 35.7% 21.6% 12.1% 6.4%

Speedup 1 1.1 2.0 41 8.1
(Blasl)

Speedup 1 2.0 7.2 29.6 112.7
(Blas2)

Table 6: Time (in seconds) obtained with p = 1, 2, 4, 8 , 16 and 32 nodes, for
solving the Poisson problem with N = 4096 with partitioning into p blocks of rows
of the same size N/p, with k = 2, for each p, with the Inezact Newton and Quasi
Newton-Cimmino methods. Speedup values (with respect to Ty-time) are given
in parentheses. Time (in percentages) spent due to LSQR routine and the Blas
routines are also given (their percentages are referred to LSQR time). Moreover,
the number of outer my, the inner i, iterations performed at each step and the
overall number of LSQR iterations are shown, with ¢; = 1073, &y = 107%,e3 =
1012,

[3] Dembo, R.S. and Steihaug, T., Truncated Newton algorithms for large-scale
unconstrained optimization, Series # 48, Yale University, New Haven, CT,
September 1980.

[4] Dembo, R.S., Eisenstat, S.C., and Steihaug, T., Inezact Newton methods,
SIAM. J. on Numeric. Anal. 19 (1992) 400-408.

[5] Gomez-Ruggiero M.A., Martinez J.M. and Moretti A.C., Comparing algo-
rithms for solving sparse nonlinear systems of equations, STAM J. Sci. Stat.
Comput., 13 (2), (1992) 459-483.

[6] Kamath, C. and Sameh, A., A projection method for solving nonsymmetric
linear systems on multiprocessors, Parallel Computing 9 (1988/89), 291-312.

[7] Matstoms, P, Parallel sparse QR factorization on shared memory architec-
tures, Computing, (1994).

[8]

[9]

[10]

[11]

[12]

[13]

Paige, G.G. and Saunders, M.A., LSQR: An algorithm for sparse linear equa-
tions and sparse least squares, ACM Trans. Math. Software 8 (1982), 43-71.

Eisenstat, S.C., and Walker, H. F., Choosing the forcing terms in an inexact
Newton method, STAM. J. Sci Comput. 17-1 (1996), 16-32.

Zilli, G., Parallel implementation of a row-projection method for solving sparse
linear systems, Supercomputer 53, X-1 (1993), 33-43.

Zilli, G., Parallel method for sparse non-symmetric linear and non-linear sys-
tems of equations on a transputer network, Supercomputer 6, XII-4 (1996),
4-15.

Zilli, G. and Bergamaschi, L., Truncated block Newton and Quasi Newton
methods for sparse systems of nonlinear equations. Experiments on parallel
platforms, Recent advances in parallel virtual machine and parallel message
passing interface, (M. Bubak, J. Dongarra, J. Wasniewski eds.), Lectures
Notes in Computer Sciences, 1332, Springer, (1997), 390-397.

Bergamaschi L., Moret, I. and Zilli G., Inexact Block Quasi-Newton methods
for sparse nonlinear systems of equations, submitted

GIOVANNI ZILLI

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, University
of Padova

Via Belzoni 7 - 35131 PADOVA (Italy)

LUCA BERGAMASCHI

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, University
of Padova

Via Belzoni 7 - 35131 PADOVA (Italy)

