Inexact Quasi-Newton methods for sparse
systems of nonlinear equations

Luca Bergamaschi?, Igor Moret ®, and Giovanni Zilli ?

2 Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
Universita di Padova, Via Belzoni 7, 35131 Padova, Italy
E-MAIL {berga,zilli} @dmsa.unipd.it
b Dipartimento di Scienze Matematiche, Universita di Trieste, Italy
E-MAIL moret@univ.trieste.it

Abstract

In this paper we present the results obtained in solving consistent sparse systems
of n nonlinear equations F(z) = 0, by a Quasi-Newton method combined with a
p block iterative row-projection linear solver of Cimmino-type, 1 < p < n. Un-
der weak regularity conditions for F, it is proved that this Inexact Quasi-Newton
method has a local, linear convergence in the energy norm induced by the pre-
conditioned matrix HA, where A is an initial guess of the Jacobian matrix, and
it may converge superlinearly too. The matrix H = [4],... ,A;", ... ,A;], where
A;" = AzT(AiAZT)_l is the Moore-Penrose pseudo inverse of the m; X n block, A;
is the preconditioner. A simple partitioning of the Jacobian matrix was used for
solving a set of nonlinear test problems with sizes ranging from 1024 to 131072 on
the CRAY T3E under the MPI environment.

Key words: Sparse nonlinear problems, Inexact Newton method, Quasi-Newton,
row-projection method, parallel iterative solver.

1 Introduction

We are concerned with the numerical solution of a system of nonlinear equa-
tions

F(2) =0 F=(fi, fa)" (1)

where F' : R® — R" is a nonlinear C! function, and its Jacobian matrix J(z) is
sparse and n is large. For solving (1) we present an iterative procedure which
combines a Quasi-Newton method (see [8], chap. 8) with a row-projection (or

Preprint submitted to Elsevier Preprint 3 February 2000

row-action) linear solver of Cimmino type [5], particularly suited for parallel
computation (truncated or Inexact version of the Quasi-Newton method, in
the sense of [7]). In the recent years there has been a growing of interest
in the row projection methods for solving large sparse nonsymmetric linear
systems [1,3,15,16]. Several numerical experiences have shown that they may
be competitive with other iterative solvers, in particular when the Conjugate
Gradient (CG) acceleration is employed. In [16] and [17] some preliminary
numerical results in solving large sparse systems of nonlinear equations by an
Inexact Newton-Cimmino and an Inexact Quasi-Newton Cimmino (see Section
2) methods are obtained (using a Transputer network and the Cray T3E).

Here below, referring to block Cimmino method, we give the general lines of
this procedure.

Let As = b be a nonsingular linear system of size n to be solved. Let us
artition A into p row-blocks : A;,i = 1,...,p, of size n; x n, ie. AT =
TA{, AT ,A};] , and partition the vector b correspondingly. Then the orig-
inal system is premultiplied (preconditioning) by
H:[Af,...,A;F,...,A;] (2)

where A = AT(A4;AT)™! is the Moore-Penrose pseudo inverse of A;. We
obtain the equivalent system HAs = Hb,

D p
(P1+---{—Pp)S:ZAj_AzS:ZA;Fbl:Hb’ (3)

=1 =1

where for each i = 1,...,p, P, = A] A; is the orthogonal projection onto
range(A7). We solve this linear system by the iterative (Richardson) method,
obtaining the row-block Cimmino method [15]

p p
Smil = Sm + W Z A (b — Aisp) = 8+ w Z im.- (4)
i—1

i=1

Clearly, as A is nonsingular, the matrix HA as sum of the orthogonal pro-
jectors >°F | P; is symmetric and positive definite. Therefore we will use the
Conjugate Gradient (CG) method to approximate the solution of (3). It is well
known that, for every starting guess so, the CG method produces a sequence
of approximations s,, to s such that

IIs — smllga < c™||s — so||gra, foreverym=1,2,..., (5)

for some ¢ < 1, with ||z||ga = [(HAz)Tz]Y/2, for z € R". Here below the
notation || - ||ga will denote also the matrix norm induced by the vector norm

I+ |4

At every CG iteration the pseudoresiduals §;,, are evaluated without explic-
itly computing matrices A;, and hence without inverting A;AT. They are

1)
computed by solving the following p linear (underdetermined) subproblems:

Aibim = (b; — Aisp), 1<i<p

in the least squares sense. In this paper we solve them concurrently with the
iterative algorithm LSQR [13]. Other choices are possible, like the augmented
system approach used in [1]. Moreover, to simplify the solution of the least
squares subproblems at each step of the inner iteration, a suitable block row
partitioning of the matrix A may be adopted in such a way that A;AT = I,
and consequently, A = A7. This partitioning [15] is always possible for every
sparse matrix and produces a number p of blocks A; whose rows are mutually
orthogonal. We report in Section 5 some numerical results in this direction.

2 The Inexact Quasi-Newton method

Now let us turn to equation (1). Combining the classical Newton method [8]
and the block Cimmino method of section 1 we obtain the block Inexact
Newton-Cimmino algorithm [16,17], in which at a major outer iteration the
linear system J(xx)s = —F(xy), where J(z3) is the Jacobian matrix in zy, is
solved in parallel by the block Cimmino method.

The class of Inexact Newton methods [7] are a variant of the classical Newton
method for solving a system of nonlinear equations. It is based on the ap-
proximate solution of the linearized system by an iterative method (Cimmino
in our case) which is stopped at an accuracy related to the residual of the
previous nonlinear iteration. Namely, instead of solving

J(a:k)sk = —F($k)
exactly, the correction s; satisfies

1T (zx)sr + F(zi) | < miell ()],

where {7} is a forcing sequence. In [7] it is proved that the method has a local,
linear convergence in an appropriate norm, and it may converge superlinearly
or even quadratically under convenient assumptions.

ALGORITHM: INEXACT NEWTON-CIMMINO

Let z(be the initial vector, k = 0.
WHILE ||F(z)|| > €1 ||F(zo)|| DO
e compute A = J(x)

e partition A" = (A],...,A}), F=F(xx)" = (F{,... ,F))

e compute the preconditioner H

e solve HAs, = —HF by the Conjugate Gradient method noting that
the product y = H Av is implemented in parallel as

p
i=1
where every term of the sum is computed by a different processor i.
® Tri1 — Tk + Sk
e k=Fk+1
END WHILE

The exit test for the Cimmino iterations is ||rgm|| < 2| F(zk)||.

To overcome the expensive computation of the Jacobian matrix at every non-
linear iteration, the Quasi Newton method has been developed, which tries the
solution of F'(z) = 0 by computing at each Newton iteration a (secant) ap-
proximation By, to J(zx). We now consider the following Broyden-like method:

ALGORITHM: INEXACT QUASI-NEWTON CIMMINO

Let 2o be the initial vector, k = 0, A = J(zo).
Let H be defined by (2). Set By = HA.
WHILE ||F(z)|| > €1 || F(z0)| DO
Compute an approximation s, to the solution of the linear system

Set
Tpi1 =Tk + Sg
yr=H (F(zp+1) — F(ar))
— B
U, = (yx kSk)
(EA[F
HASk
V=
[EA[F
Bk+1 = Bk + ’U,k’Ug, k=k + 1.
END WHILE

Although, the fixed approximation A to the initial Jacobian J(zg) is updated
in each step, we refer to the above process as a Quasi-Newton method. Then we
also obtain an Inexact Quasi-Newton method since the correction at each step
is determined by solving approximately the linearized equation (6). It is easy

to check that By 18y = yx (secant equation)and ||Byy1—By||ga < ||B—Bk||ga
for any B for which Bsy = y (least change condition).

Concerning the solution of (6) we proceed as follows. Setting z = HAs and
t; = s;/||si||ga for every i = 0,... ,k — 1, we rewrite (6) as

k-1
z+) ujt;-rz = —HF(zz) k> 1. (7)
=0

Then we multiply eq. (7) by ¢; obtaining the k x k linear system

k-1
¢+ Y tiujc; = —t] HF (z4) i=0,...,k—1, (8)
=0
in the unknowns ¢; =t 2, i =0,... ,k — 1. Hence z is obtained from (7) as

k-1
z=—HF(z1) — > cjuj.
i=0

Finally, we compute by the CG an approximation s; to HAs = z with sq =0
as the initial vector. Observe that, at each step, the coefficient matrix of system
(8) is obtained simply by bordering the previous one, and the linear system
HAs = z is solved concurrently with the row-projection (Cimmino) method.
It is straightforward to check that this system has a unique solution if and
only if By is non singular for each k.

Note that one of the most expensive operations is represented by the construc-
tion of the preconditioner H. In the Quasi-Newton method this preprocessing
stage is carried out once and for all since at each outer iteration we have to
solve a linear system with the same A = By as the coefficient matrix.

3 Convergence results

Now we give a convergence theorem under weak regularity conditions for F.
Referring to system (6) for each k =0,1,..., let us set

£ = ls — skllza (9)
5] 74

Our hypotheses are the following:
Assumptions 3.1. Let D C R™ be an open conver set. Let F : D — R"
be Frechet differentiable. Let * € D such that F(z*) = 0 and J(z*) is non

singular. Let us set

IF@) = F@) = I e=
==yl o TPYES

w(z,y) =

Let S(r) = {z : ||z* — z||2} < r} and let R > 0 such that S(r) C D for
0 <r < R. Then, for any 0 <r < R, define

w(r) = sup w(z,y). (10)
(2)€5(r)

Accordingly, we assume that, for every 0 < e <1, it is hm Ew(& r) = 0.

Theorem 3.1. Let Assumptions 3.1 hold. For every € € (0 1) there ezist a
d > 0 and an > 0 such that if ||z* — zol|lga < 6, ||J(z*) — Al < n and
ex < €9 < € for each k, then By is invertible, the sequence of iterates {xy}
converges to * and

[2* — Zrt1llma < € (|27 — 2l|ma (11)
Moreover if klim ex = 0, the convergence is q-superlinear.
—00

The theorem states that the method converges, provided that the initial
guesses ro and A are sufficiently good. On the other and, it also shows that a
superlinear convergence can be achieved increasing step by step the accuracy
by which one solves HAs = z. As for other iterative methods (see e.g. [4], [11],
suitable modifications can be introduced in order to get global convergence.

The proof of the convergence being very technical, we defer it in Appendix A.

Table 1

Number m of rows of every block of the partitioning on each of the p nodes, numbers
of nonzero elements n; — on nodes 1 and p — and no — on the remaining nodes —
respectively, referred to the Poisson and Bratu problems of size n = 4096.

D m | l-blocks n1 N9
1 | 4096 64 | 20224 -
2 | 2048 32 | 10112 -
4 | 1024 16 | 5024 | 5088
8| 512 8 | 2480 | 2544
16 | 256 4| 1208 | 1272
32 | 128 2 572 | 636

4 Computational aspects and numerical tests

The two procedures have been tested with the following nonlinear sparse prob-
lems F(z) = (f1,..,fa)T =0:

(1) Broyden tridiagonal problem [2], with h a real parameter:

fl(.'E) = (3 — hl‘l).’lfl — 2332 + 1= 0,
fi(z) = —zi_1+ (83— hzy)z; — 22,1 +1=0, i=2,...,n—1,
fo(z) = —2p 1+ (83— hz,)z, +1=0.

(2) Poisson problem, obtained by application of the finite difference (FD)
method to the two-dimensional boundary problem:

,u3

Au=—F+—— 0<z<1 0<y<l1
U 1+$2+y2’ —$—7 —y—’
u(0,y) =1, u(l,y) =2 —¢, 0<y<1,
u(z,0) =1, u(z,1) =2 — €°, 0<z<1,

by discretizing the equation by the 5-point formula on a [x [grid with a
total number of unknowns equals to n = [X [. The resulting linear system
is, as we know, a tridiagonal /-block system with every [-blocks of size [.

(3) Bratu problem [2] obtained by discretizing with FD in the unit square Q
the following two-dimensional boundary value problem:

—Au— X" =0 in Q, u=0 on 0N (12)

for different values of the real parameter A. It is known [10] that there
exists a critical value of A\, A* such that problem (12) has two solutions
for A < A* and no solutions for A > A*.

To ensure a load balance between the processors, the Jacobian matrix is par-
titioned into p almost equal-sized blocks, each of them having m = n/p rows.
In the tridiagonal problem the numbers of nonzero elements assigned to each
processor differ at most of 1, (3n/p— 1 for processors 1 and p, 3n/p for proces-
sor i, i = 2,...,p—1). The remaining problems come from the discretization
by finite differences of partial differential equations. The sparsity patterns of
the matrices involved in these problems guarantee that again an almost equal
number of nonzero elements is assigned to each processor. An example of the
p blocks partitioning is described in Table 1 for the Poisson’s and Bratu prob-
lems (with [= 64 and n = 4096), in which n; is the number of nonzero
elements assigned at processor 1 and p and ny is the number of nonzero el-
ements assigned to processor ¢, i = 2,...,p — 1. We notice that these two
numbers are very close.

Table 2

Time (in seconds) and speedups obtained for solving the ¢ridiagonal problem with
n = 131072 with the Inexact Newton-Cimmino method, with maznygwT = 20,
mazrcg = 2, mazrsor = 30 and &1 = 107%,e5 = 10712,¢53 = 10712, Time spent
due to LSQR and Blas routines are also given (the latter is part of LSQR time).

n=131072 |p=1|p=2|p=4|p=8|p=16|p=32

Time 126.2 79.4 58.6 | 47.5 42.2 40.0
speedup 1| 16| 22| 27| 30| 32
knewT 4 4 4 4 4 4

kea 2 2 2 2 2 2
krsor 30 30 30 30 30 30

LSQR time 122.7 | 76.9 | 56.2 | 45.0 39.8 37.2
9% | 9% | 96% | 95% 94% 93%
Blas 1 time 57.3 | 421 | 36.0| 31.9 30.3 29.5

Blas 2 time 59.6 | 29.0 14.5 7.5 3.8 1.9
Blasl speedup 1 14 1.6 1.8 1.9 1.9
Blas2 speedup 1 2.0 4.1 7.9 15.7 314

The results are obtained on the CRAY T3E installed at CINECA (Bologna,
Italy). The Fortran code runs under MPI implementation. We show the results
obtained on a maximum of 32 processors.

The times shown in the forthcoming tables refer to the iterative part of the
code: Newton outer iterations with updating of the Jacobian matrix (for In-
exact Newton case only) and the right hand side vector. Each of this itera-
tion essentially consists of a conjugate gradient procedure in which the pseu-
doresiduals d; s, are concurrently computed by krsor LSQR iterations, within
a tolerance 3. The sparse Jacobian matrix is stored by row, according to the
compressed sparse row (CSR) format.

4.1 Results for the tridiagonal problem

The parameters used for this test problem are: n = 131072, h = 2, zy =

(—1,... ,—1)T. In order to compare correctly the speedups of the algorithm,
we set €5 = €3 = 107 !2, thus forcing the Cimmino linear solver to stop
at kc¢ = maxce = 2 inner iterations and the LSQR solver to stop at

krsor = mazrrsgr = 30 iterations, for every p. With these parameters, the
relative residual for the linear system has been O(10°) and the LSQR residual
O(10719). Setting e; = 10~ % the tolerance for the nonlinear iteration, we found

Table 3

Time (in seconds) and speedups obtained for solving the ¢ridiagonal problem with
n = 131072 with the Inezxact Quasi Newton-Cimmino method, with mazygwT =
20, mazcg = 2, mazrsor = 30 and 1 = 1076, 9 = 10712, 5 = 10712, Times spent
due to LSQR and Blas routines are also given (the latter is part of LSQR time).

n=131072 |p=1|p=2|p=4|p=8|p=16|p=32

Time 147.2 94.4 | 69.2 57.2 51.2 47.5
speedup 1 1.6 2.1 2.6 2.9 3.3
knewT 5 5 5 5 5 5

ko 2 2 2 2 2 2
krsor 30 30 30 30 30 30

LSQR time | 142.6 | 90.3 | 65.2 | 52.7 47.3 43.2
9% | 96% | 94% | 92% 92% 91%
Blasl time 66.6 | 49.2 | 414 | 37.3 36.0 35.2
Blas2 time 689 | 344 | 170 8.6 4.4 2.3

Blasl speedup 1 14 1.6 1.8 1.9 1.9

Blas2 speedup 1 2.0 4.0 8.0 15.7 30.0

that an equal number kygwr = 4 (Newton) and kygwr = 5 (Quasi-Newton)
outer iterations were sufficient to achieve convergence, for every p. We re-
port the overall results of the Inexact Newton and Quasi-Newton methods in
Tables 2 and 3, respectively.

From these Tables, where we also give the part of the LSQR time elapsed for
calling the BLAS routines, we can see that the CPU time of the algorithm
is essentially due to the LSQR solver. This will be confirmed by the other
numerical experiments. Therefore we can conclude that the speedup values
reported in the Tables are due to the sparse solver of the underdetermined
systems of linear equations. The key to our procedure to be successful relies
mainly on the scalability of this solver. From the tables we see that only the
sparse matvet routine (BLAS2 kernel) gives the expected speedup, whereas
BLASI1 kernels of length n require a number of operations O(n) independent
of the subproblem size (n/p).

From Tables 2 and 3 we can also see that the speedups obtained with the
Inexact Quasi-Newton method are roughly the same as in the Inexact Newton
method.

Since the parallelism of the whole algorithm essentially depends on the per-
formance of the solver of the linearized system, at every nonlinear iteration,
one single nonlinear iteration is sufficient to estimate the parallelism of the

Table 4

Time (in seconds) and speedups T2 /T, obtained for solving the linear nonsymmetric
Sameh problem of size n = 4096 with g9 = 1073 and e3 = 1012, Moreover, we
give the average number of CG iterations kcg, the inner LSQR krsgr iterations
performed at each step and the overall number of LSQR iterations.

n = 4096 p=1| p=2| p=4| p=8|p=16 | p=32

Time 274 74.8 42.6 23.7 17.5 12.6
speedup - 1 1.8 3.2 4.3 5.9
kca 1 28 45 64 90 127
krsor (avg.) | 2258 384 211 118 73 38

krsqr (tot.) 2258 | 10740 | 9481 | 7542 6569 4843

LSQR time 27.3 74.6 42.3 23.3 16.1 11.6
99.9% || 99.8% | 99.7% | 99.2% | 96.3% | 96.1%

Blasl time 9.8 324 23.4 15.3 11.5 8.9
Blas2 time 16.3 37.6 14.8 4.9 2.0 0.7
Blasl speedup 1 1.4 2.1 2.8 3.6
Blas2 speedup 1 2.5 7.6 18.8 53.7

whole algorithm. To this end, we report here the results of the block Cimmino
method when applied to a linear test problem Ax = b, where A is the non-
symmetric sparse Sameh matrix. It is obtained by a 5-point finite difference
discretization of the following PDE:

—Ugg — Uyy + 1000 €™ (u, —uy) =g, u==z+vy,

on a 64 x 64 grid. The symmetric part of A is not positive definite. It is
known (see [12], [15]) that restarted Krylov subspace methods stagnate or
fail to converge with this problem. Instead, convergence is attained by the
Cimmino method. The right hand side is chosen so that the solution is z =
(1,2,...,n)T. Starting from a zero initial guess, we stop the iterations as
soon as the relative residual norm ||7,,||/||7o|| is smaller than a prescribed
tolerance 5. Taking advantage of the experiments on the convergence of the
two nonlinear problems, we could set the tolerance €5 to a not too small
accuracy (€2 = 1073 in our test). On the contrary, since the LSQR routine has
to solve accurately the underdetermined subproblems, we set e3 = 10712,

The results are shown in Table 4. From this Table it is worth noting that
with p = 1 the Cimmino method acts as an ezact preconditioner applied to
n X n problem and hence the solution is attained at the very first iteration
(with krsgr = 2258 LSQR iterations). With p > 2, the number of Cim-
mino iterations and the corresponding CPU time increase largely, due to the

10

Table 5

Time (in seconds) and speedups T2/T}, obtained for solving the Poisson problem
of size n = 4096 with the Inexact Newton method with 1 = 10*3, g2 = 104 and
€3 = 10712, Times spent due to LSQR and Blas routines are also given (the latter is
part of LSQR time). Moreover, we give the number of outer iterations kygwr, the
average number of CG iterations k¢, the inner LSQR krsqr iterations performed
at each step and the overall number of LSQR iterations.

n = 4096 p=1 p=2| p=4| p=8|p=16| p=32
Time 201.6 | 2120.7 | 1521.8 702.1 | 311.8 | 159.8
speedup 1 14 3.0 6.8 13.3
knewT 2 2 2 2 2 2
kca 1 89 212 303 391 525
krsor (avg.) | 4276 1715 813 372 161 68
krsor (tot.) | 4276 | 165400 | 176960 | 113920 | 62841 | 35428

ill-conditioning of the Laplace equation. As expected, we will see that this
also occurs with the Poisson and Bratu test problems. For these problems, it
is therefore reasonable to evaluate the performance of the parallel Cimmino
method with respect to the T, CPU time (p = 2). The speedups reported
in Table 4 are consistently computed as S, = T3/T,, p > 2. The promis-
ing speedup values shown in the table account for the fact that both the
numbers of LSQR iterations (krsgr) and the CPU time which they require,
decrease with growing p, opposed to an increasing number of CG iterations
(ko) required to solve the preconditioned systems H Az = Hb. This behavior
is summarized in Table 4 by the number of LSQR iterations which are shown
to decrease, starting from the p = 2 case on. In Table 4, we finally note that
starting from 8 processors we obtain a total CPU time which is less than the
p =1 CPU time.

4.2 Results for the Poisson problem

For comparison with the linear test problem, we restricted ourselves to test
a problem of size n = 4096, relative to a grid of n = [x [nodes, [= 64, see
Table 1. The test parameters were e; = 1073, g5 = 1074, g3 = 107'2, starting
from an initial guess o = (—1,...,—1)T. We see that only two outer itera-
tions were required by both methods to achieve the exit test. Therefore the
two methods took almost the same time and an equal number of iterations.
The Inexact Quasi-Newton method should be tested with more difficult prob-
lems with respect to the evaluation of the Jacobian matrix, in order to show
computational advantages with respect to the Inexact Newton approach. The
results are summarized in Table 5 which shows the high speedup values for

11

+—— Newton (lambda=1)

100 - & — 8 Newton (lambda=6.8) .
\ ——=o Quasi Newton (lambda=1)
10° L \ oo x Quasi Newton (lambda=6.8)

residual norm
=
o
T

10 [\E\ X]
-4 b \B\ x
10 N x b
10~ E\ N " |
N
N
10° : a
0 5 10

of iterations

Fig. 1. Convergence profile of the non linear procedures in the solution of the Bratu
problem with A = 1 and A = 6.8 (A-values reported between parentheses).

a relatively small problem. We may note that the total LSQR iterations de-
crease, from p = 4 to p = 32 by a factor 5, proving that the condition number
of the underdetermined problems dramatically decrease with their size.

4.8 Results for the Bratu problem

We report in Figure 1 the convergence profiles of the two nonlinear procedures
applied to the test problem with A = 1 (weak nonlinearity) and A\ = 6.8 (near
the critical point). In the A = 1 case the two profiles are very similar, showing
that the two methods behave in the same way (they both achieve the exit test
after 4 iterations). In the A = 6.8 case, the Newton method converges after
7 iterations while 10 iterations are required by the Quasi-Newton method.
Table 6 shows the results obtained with A = 1 of the Newton case only, on
a 64 x 64 mesh with n = 4096. We may notice again that the total number
of LSQR iteration dramatically increase from p = 1 to p = 2 processors, but
it decreases from p = 4 processors. Therefore, as already pointed out in the
linear case, the speedups T5/T,,p > 2 are larger than the speedups exhibited
in the tridiagonal case.

12

Table 6
The same as Table 5 — for the Bratu problem — with n = 4096 and A = 1.0 and
with e1 = 10 %,e9 = 10 %,¢3 = 10 12.

n = 4096 p=1 p=2 p=4| p=8|p=16 | p=32
Time 93.36 | 1029.51 | 636.207 | 387.12 | 188.77 | 118.60
speedup - 1 1.6 2.7 5.5 8.7
knewr 4 4 4 4 4 4
kca 1 48 86 141 230 318
krsqr (avg.) || 1300 1021 341 278 119 62
krsor (tot.) 1300 | 49000 | 47888 | 40336 | 27512 | 19676

5 Row-orthogonal partitioning

As already pointed out in the Introduction, to overcome the problem of the
costly solution of the least square subproblems, we propose a suitable block
row partitioning of the matrix A in such a way that 4,AT =1, i=1,...q,
and consequently, A} = AT. This allows to simplify the solution of the least
squares subproblems at each step of the inner iteration. This partitioning [15]
is always possible for every sparse matrix and produces a number g of blocks
A; whose rows are mutually orthogonal. As an example, we show in Figure 2
the pattern of the Sameh linear test problem after the reordering in 7 row-

0

100}
200f

300’-_
a00f-"" .

[1070) IR
800."..'

900f . .

1000 - R

v ey IEERP I B LA S SO R L L
0 100 20 300 400 500 600 700 800 900 1000
nz = 4992

Fig. 2. Pattern of the Sameh linear test problem after the reordering in 7
row-orthogonal blocks

13

Table 7
Time (in seconds), speedups 11 /Ty, number of outer (kxgwr) and inner iterations
(ko) obtained for solving the three test problems, using the row-orthogonal parti-
tioning.

Poisson problem, g1 =10"%,e9 = 1075,
n = 4096 p=1 p=2 p=4 p=2_8 p=16
Time (speedup) | 21.66 || 17.22 (1.3) | 17.37 (1.3) | 18.15 (1.2) | 20.49 (1.1)
knewT 2 2 2 2 2
kca 1123 1123 1123 1123 1123
Bratu problem, g1 =104, =105,
n = 4096 p=1 p=2 p=4 p=3_8 p=16
Time (speedup) | 13.40 || 10.22 (1.3) | 9.92 (1.4) | 10.66 (1.3) | 16.02 (0.8)
knewr 4 4 4 4 4
kca 630 630 630 630 630
Linear problem, g =108
n = 4096 p=1 p=2 p=4 p=3_8 p=16
Time (speedup) | 6.32 | 4.60 (1.4) | 4.00 (1.6) | 4.08 (1.6) | 4.60 (1.4)
kca 696 695 694 694 694

orthogonal blocks. The numerical results relative to the row-partitioning for
some of the test problems of the previous section are shown in Table 7. From
the Tables 4, 5, 6, and 7 we can make the following observations.

The Conjugate Gradient applied to the row-orthogonal partitioned matrices
takes a larger number of iterations with respect to the LSQR case. For ex-
ample, in the Poisson test case the number of outer iterations are constantly
equal to 1123 (see Table 7) in the orthogonal case while they range from 1 to
525 (see Table 5) using the LSQR algorithm. The same behavior is evidenced
by the other test problems.

On the contrary, the orthogonal variant of the algorithm is more convenient
from the point of view of CPU time, as can be seen by comparing the overall
CPU times in the three test cases for a fixed number of processors. Note that
now a single iteration is much less costly than in the LSQR algorithm, since
the solution of a linear subproblem is replaced by a cheap multiplication for
a diagonal matrix (or even the identity). Moreover, the speedups in the sec-
ond algorithm are correctly computed as T; /T, because in this case the CPU

14

Table 8
CPU time needed by the matrix vector products and by the reduce operation in the
linear test case.

p |w=Av (T,/T1) | w= ATv (T,/T1) | mpi allreduce (%) | overall
1 1.40) 1.60) 0.36 (06) | 6.32
2 0.70 (2.0) 0.86 (1.8) 0.92 (20) | 4.60
4 038 (3.7 054 (3.0) 1.50 (25) | 4.00
8 020 (7.0) 0.36 (4.4) 2.08 (51) | 4.08
16 0.10 (13.9) 024 (6.7 2.66 (58) | 4.60

time decreases from 1 processor forward. However, they are not completely
satisfactory, reaching the maximum value of 1.4 for p = 4 processors. This
fact is mainly due to the cost of the communication routine MPI_ALLREDUCE
which performs the communication of the local pseudoresiduals and their sums
on every processor. This operation is costly, and its cost increases with the
number of processors. Table 8 refers to the linear problem, and yields the
time spent by the most expensive routine (the matrix-vector product) and by
the MPI_ALLREDUCE routine. Note the good speedup obtained by the matrix-
vector product, while the time spent by the MPI_ALLREDUCE routine becomes
a large part of the overall CPU time as the number of processors increase, go-
ing to more than 50% in the case with 16 processors. Differently, in the LSQR
case the times spent by the communication represent a little portion compared
to the much higher times required to solve the least squares subproblems.

6 Conclusions and future topics

In this paper we have proposed an Inexact Newton and Quasi Newton method,
whose linearized system is solved by a row-projection iterative scheme (Cim-
mino method). In principle, this approach is well suited for a parallel envi-
ronment since it requires independent solutions of p underdetermined linear
subproblems, p being the number of processors.

We have first proved that, under suitable hypotheses, the Inexact Quasi-
Newton Cimmino method achieves at least linear convergence in the energy
norm induced by the preconditioned matrix HA, A being an approximation
of the Jacobian matrix. The numerical experiments on the CRAY T3E on
problems of large size point out that the solution of the underdetermined
subproblems represent the major part of the computation. The speedups ob-
tained (test problems 1) are not fully satisfactory, due to the poor scalability
of BLASI routines called by LSQR solver.

15

Moreover, the number of Cimmino iterations may increase with the number of
processors (test problems 2 and 3), corresponding to a worsening of the action
of the preconditioner. In the p = 1 case, the Cimmino method converges in
only one iteration, being HA = I. At the same time the subproblems become
better conditioned with increasing p, and therefore they require less iterations
to be solved. The balance between these two aspects result in a decrease of
the overall number of inner iterations and consequent high speedup values
Tp / T2, P Z 2.

Some preliminary results show that the algorithm with the row orthogonal
block partitioning of the Jacobian matrix, despite of a larger number of outer
iterations with respect to the LSQR case is more convenient from the point of
view of CPU time. Moreover, the CPU time correctly decreases from 1 proces-
sor forward, and the speedups are correctly evaluated as S, = T1/T,, p > 1.
They are however not yet satisfactory. This fact is mainly due to the cost of the
communication routine MPI_ALLREDUCE which performs the communication
of the local pseudoresiduals and their sums on every processor. This operation
is costly, and its cost increases with the number of processors.

Finally, the advantage of using the Quasi-Newton method instead of the New-
ton method relies on the fact that only the initial approximation A of the
Jacobian matrix is required, without the updating of the Jacobian matrix at
every nonlinear step. This advantage will be more evident with other test
problems in which the Jacobian matrix is not available or difficult to compute
and requiring a higher number of iterations.

A Proof of Theorem 3.1

To prove the theorem 3.1, we need the following
Lemma A.1. Let J(z*) be invertible, then there are positive constants 1o, o1
and oy such that for every n x n matriz A with ||J(z*) — Al|2 < 1o it is

af (z,z) < (HAz,z) < ag (z,z)

Proof of Lemma A.1. Let us set A* = J(z*) and A* be partitioned into p
block rows A;,i = 1,...,p, i.e. A* = [A’{T,AET, e ,A;T] . Accordingly, let
us set
H = [A], . A7, A
Then
H*A*:Pl*_|_...+Pi*+..._|_P;

16

where P = A*" A%. Clearly, there are positive constants p; and p, such

Hea < pafll3-

pillzlz < x|
Let A and 7o such that if ||J(z*) — A|| < no, then A is invertible. Hence,
partitioning A as A*, it follows that for each i =1,... | p,
rank(A4;) = rank(A}).

As well known (see [14]) this ensures that, if 7 is sufficiently small, then there
is a constant ¢, independent of A, such that

1P = Pill2 < ¢ mo,
for every i = 1,... ,p, so that we have
|H*A* — HA||s < pen.
Then, let ny be that pcng < p;. We easily get
(p1 = pemo)l|zl3 < llz|Za-

Obviously
|2l34 < (p2 + peno)lll3.

Proof of Theorem 3.1. Referring to the notation of the previous Lemma
A1, let us set

B =02 |77 (2")|2-

Let us take n < ny and 4 such that the following conditions are fulfilled:

25*01 <1 (A1)
1
r = 0'25 S R (A2)
i w (6’“7‘) <n (A.3)
k=0
(1+60)B<2_n+w(r)> +¢e0 < g, where 8 = Lﬂ <1 (A.4)
g1 01 1 _ 2[8*0_
1

By Lemma A.1, if zq is such that ||z* — zol|s < § then ||z* — zo||ga < 7
Setting Cy = A we have By = HCy and

1(Co— J(a)) (HA) 2 < - (A5)

1

17

using the hypothesis and Lemma A.1 again. Therefore we have

I(HA)2Co M < B, (A.6)
using the classic inequality
- 1571
IS +T)7Y < -
1— (IS
with S and T two matrices. We now assume that, for j = 0,1,... ,k,
(G5 = (@) (HA) s < 2.7 (A7)

where B; = HC};. The proof, by induction, is given below; for j = 0 see (A.5).
Thus Cj is invertible and, with the same argument used to prove (A.6), one
can obtain that

I(HA)2C; 2 < 8. (A.8)
Now we can prove (11) by induction. First of all we have
2" — Thsallma < [[2* — 2 — sllma + exlls] 7a-
Then, since
Isllza < 2" — o, — sllma + [|2° — 2]/ ma
we have
2" — zhsallga < (1 + €o)||z” — z — sl[ma + €ol|z” — k| A (A.9)

Moreover (adding and subtracting — J(z*)) we get

(HA)Y? (z* — 2, — s) = [(HA)l/ZCk_l] [Ck (z* — xx) + F(z)] =
= (426, > {[(C— T) (HA A HAP (o —)]~
— [(F(z7) — F(zx) — J(27) (2" — zx))]} -

Hence, taking (H A)-norms, by (A.8), (A.7) and by Assumptions 3.1, we obtain

2
la* — 21— sllra < 8 (" la” = axllmwa + w(n)llo” @l) <
1

2n w(ekr .
<p <_?7 + w(er))> 2" — ok ma,
01 g1

18

and finally

lz* — zps1llma < € ||l2° — zallma < e¥|2" — zo||ga < ... < M

using (A.4) and (A.9).

We now prove (A.7). Using the Broyden update, note that, for j = 0,1,... , k+
1 we have

F(zj1) — F(z;) — Cjs; (HAs;)"

lls;|lza lls;llza

Cj+1:Cj+ kZO,l,....

Then we have

F(zj1) — F(x;) — C;s;) (HA)?s;)"

[l

Ci(HAY 2 = Cy(HAY 2 4 ¢

)

so that

(Cj+1 - J(J,'*)) (HA)71/2 =

/2. 1/24 \T
— (CJ . J(:E*)) (HA)71/2 (I . (HA) J((HA) .7))) +

||3j||%1A
N (F(zj41) = F(z;) — J(2%)s;) ((HA)1/2SJ')T_

15174

Taking 2-norms, by (10) and the convergence hypotheses and by Lemma A.1,
we get

1(Cja — (@) (HA) 2|2 < [I(Cj — I (&) (HA)T 2]y +
1F(z541) — F(z;) = J(@*)sjlla [|(HA)2s;)]]

+ S
(ERIFN l|s;|lza
* - j 1
< (G5 — J(z*) (HA) 2|, +w(€’7‘)0—1- (A.10)

Hence, recursively we have

[(Cues = J@) (HA) 2 < (Co— T(@) (HA) M2 + w(ebr) - <
< (Co = T (HA) Y+ — S w(eir) 2T,

01 j=0 01

using (A.5) and (A.3).

19

In order to show the g-superlinear convergence when klim er = 0, in the
—»00

space of the n x n matrices let us introduce the scalar product (M, N)ga =

Y (Mej, Nej)ga, where {e;} is some system that is orthogonal with respect

j=1
to the scalar product (,)ga in R". Then, considering the norm |||M|||ga =

\/ (M, M)ga , the following lemma can be easily proved.

Lemma A.2. For every matriz M and for every z € R™ we have

z(HAz)T

1215

_ 1Mz

I2llFa

1M (I - Mizra = 11 M][4

Using this and assuming that klim er = 0, one proves the g-superlinear con-
—00

vergence by some standard arguments like those used in Th. 8.2.2 of [8]. [

Acknowledgements

Work supported in part by the MURST funds. The first author has also been
supported by EC contract # 1C15 CT96-211.

References

[1] Arioli, M., Duff, I., Noailles, J., and Ruiz, D., A block projection method for
sparse matrices, SIAM J. Sci. Stat. Comput. 13 (1), 47-70, 1992.

[2] Bongartz, I., Conn, A.R., Gould, N.I.M., and Toint, P.L., CUTE: Constrained
and unconstrained testing environment, Research Report, IBM T.J. Watson
Research Center, Yorktown Heights, NY, 1993.

[3] Bramley R., and Sameh, A., Row projections methods for large nonsymmetric
linear systems, SIAM J. Sci. Stat. Comput. 13 (1), 168-193, 1992.

[4] Brown P.N. and Saad Y., Hybrid Krylov methods for nonlinear systems of
equations, SIAM J. Sci. Stat. Comput. 11, 450-481, 1990.

[6] Cimmino, G., Calcolo approssimato per le Soluzioni di Equazioni lineari, La
Ricerca Scientifica, 1, 326-333, 1938

[6] Dembo, R.S. and Steihaug, T., Truncated Newton algorithms for large-scale
unconstrained optimization, Series # 48, Yale University, New Haven, CT,
September 1980.

[7] Dembo, R.S., Eisenstat, S.C., and Steihaug, T., Inexact Newton methods,
SIAM. J. Numer. Anal. 19, 400-408, 1982.

20

[8] Dennis, J.E. Jr., and Schnabel, S., Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, SIAM, Philadelphia, PA, 1996.

[9] Eisenstat, S.C., and Walker, H.F., Choosing the forcing terms in an Inexact
Newton method, SIAM. J. Sci Comput. 17-1, 16-32, 1996.

[10] Fokkema D. R., Slejipen G.L.G. and Van der Vorst H.A., Accelerated Inexact
Newton schemes for large systems of nonlinear equations. SIAM J. Sci.
Comput., 19 (2), 657-674, 1997.

[11] Griewank A., The local convergence of Broyden like-methods on Lipschitzians
problems in Hilbert spaces, SIAM J. Numer. Anal. 24, 684-705, 1987.

[12] Kamath, C. and Sameh, A., A projection method for solving nonsymmetric
linear systems on multiprocessors, Parallel Computing 9, 291-312, 1988/89.

[13] Paige, G.G. and Saunders, M.A., LSQR: An algorithm for sparse linear
equations and sparse least squares, ACM Trans. Math. Software 8, 43-71, 1982.

[14] Stewart, G.W., On the perturbation of pseudo-inverses, projections and linear
least squares problems, SIAM Review 19, 634-662, 1977.

[15] Zilli, G., Parallel implementation of a row-projection method for solving sparse
linear systems, Supercomputer 53, X-1, 33-43, 1993.

[16] Zilli, G., Parallel method for sparse non-symmetric linear and non-linear
systems of equations on a transputer network, Supercomputer 6, XII-4, 4-15,
1996.

[17] Zilli, G. and Bergamaschi, L., Truncated block Newton and Quasi Newton
methods for sparse systems of nonlinear equations. Experiments on parallel
platforms in: M. Bubak, J. Dongarra, J. Wasniewski (Eds.), Recent advances
in PVM and MPI, Lectures Notes in Computer Sciences, 1332, Springer, 390-
397, 1997.

21

