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Parallel inexact Newton and interior point
method

L. BERGAMASCHT (*) AND G. ZILLI(*)

SUNTO - In questo lavoro vengono presentati risultati ottenuti nella soluzione di sistemi

AB

1.

nonlineari di grandi dimensioni con 1 metodi Newton e Quasi-Newton inesatti com-
binati con un solutore iterativo a blocchi di tipo row-action (Cimmino). Si propone
inoltre un opportuno partizionamento della matrice Jacobiana (o di sue approssi-
mazioni). In tale modo si ottengono blocchi di righe mutuamente ortogonali che
permettono di risolvere facilmente 1 sottoproblemi ai minimi quadrati introdotti dal
solutore lineare. Vengono presentati alcuni risultati numerici ottenuti sul CRAY-
T3E dall’applicazione di tale metodo ad alcuni problemi test nonlineari derivanti
dalla discretizzazione di equazioni differenziali alle derivate parziali. Sono infine
mostrati alcuni risultati preliminari che dimostrano l'efficienza del metodo appli-
cato a problemi di complementarietad nolineare misti risolti con metodi di punto
interno.

STRACT - In this paper we present the results obtained in the solution of sparse
and large systems of non-linear equations by inexact Newton methods combined
with an block iterative row-projection linear solver of Cimmino-type. Moreover, we
propose a suitable partitioning of the Jacobian matrix A. In view of the sparsity,
we obtain a mutually orthogonal row-partition of A that allows a simple solution
of the linear least squares subproblems. We present numerical results obtained on
a CRAY-T3E when this method is used to solve both non linear problems arising
from dicretization of PDEs. Preliminary sequential results are also shown in the
solution of nonlinear mixed complementary problems solved with interior point
methods.

— The Inexact Newton and Quasi-Newton Cimmino method

We are concerned with the numerical solution of a system of nonlinear equa-

tions

(1)

F(z)=0  F=(fi,...fa)"
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where F': R* — R™ is a nonlinear C'! function, and its Jacobian matrix J(z)
is sparse and n is large. Moreover, in Section 5 we solve the nonlinear systems
which arise from the application of the primal-dual interior point method (see
[7]) to mixed complementary problems.

Let As = b be the linear system to be solved. Here below we give the general
lines of the block iterative Cimmino method. Let us partition A into p row-
blocks: A;,i = 1,...,p, i.e. AT =[Ay, As,..., Ay] and partition the vector b
conformally. Then the original system is premultiplied (preconditioning) by

(2) H,=[Af, .. Af .. Af]

where AZ-+ = AiT(AiAZ-T)_l is the Moore-Penrose pseudo inverse of A;.
We obtain the equivalent system H,As = H,b,

P P
i=1 i=1
where for each i = 1,...,p, P; = A} A; is the orthogonal projection onto

range(A7). As A is non singular, the matrix H,A > F_, AT A; is symmetric
and positive definite. Then the solution of (3) is approximated by the Con-
jugate Gradient(CG) method. The ¢ (underdetermined) linear least squares
subproblems in the pseudoresidual unknowns d;

(4) Ai(sik = (bz — AiSk) , 1<i<p

must be solved at each conjugate gradient iteration (k=1,2...).

Combining the classic Newton method and the block Cimmino method we
obtain the block Inexact Newton-Cimmino algorithm [9] and [11], in which at a
major outer iteration the linear system J(zg)s = —H F(zg), where J(z*) is the
Jacobian matrix, is solved in parallel by the block Cimmino method (3).

In the Inexact Newton method [3] for solving F(z) = 0, the step s, satisfies

() I (zx)si + F(2e)]] < el F (24)]]

where 7 is the forcing term. In [3] it is proved that the method has a local,
linear convergence in an appropriate norm, and it may converge superlinearly or
even quadratically under convenient assumptions.

ALGORITHM: INEXACT NEWTON-CIMMINO
Let xzg be the initial vector, & = 0.
WHILE ||F (2¢)]| > &1 ||F (o) DO

e compute A = J(xp)



END
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partition AT = (AT,.. .,Ag), F=F(xx)T = (FT, .. .,FpT)
compute the preconditioner H

solve HAAz, = HF by the Conjugate Gradient method noting that
the product y = H Av is implemented in parallel as

P
i=1

where every term of the sum is computed by a different processor i.

.’l‘k+1:£C‘k-|-AIk k‘:k’-l—l

WHILE

The exit test for the Cimmino iterations is ||7g || < €2]|F(2k)]]-

To overcome the expensive computation of the Jacobian matrix at every
nonlinear iteration a Quasi Newton method has been developed, which tries the
solution of F'(z) = 0 by computing at each Newton iteration an approximation
By of J(z). We now report the following Broyden-like method:

ALGORITHM: INEXACT QUASI-NEWTON CIMMINO

Let zg be the initial vector, k = 0, A = J(z).

Let H be defined by (2). Set By = HA.

WHILE || F(2x)|| > €1 ||F (x0)]| DO

Compute an approximation sg to the solution of the linear system

(6) Brs = —HF (xy)
Set
Tp+l = Tk + sg
Yk = H (F($k+1) — F(QZk)) 3
- B
we = W= Bise)
sk |l
HASk
v =
llsk[lmra
Bk+1 = Bk—i-ukvg, k=Fk+1.

END DO
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Concerning the solution of (6), it can be shown [1] that it can be reduced to
the system H As = z which is solved approximately with the CG with sg = 0
as the initial vector. HAs = z is solved concurrently with the row-projection
(Cimmino) method.

Note that one of the most expensive operations is represented by the construc-
tion of the preconditioner H. In the Quasi-Newton method this preprocessing
stage is carried out once and for all since at each outer iteration we have to solve
a linear system with the same A = By as the coefficient matrix.

2. — Convergence results

Now we give a convergence theorem under weak regularity conditions for F.
Referring to system (6) for each k =0,1,..., let us set

) o = 5= sllma
l[sll7ra

Our hypotheses are the following:

Assumptions 2.1 Let D C R" be an open conver set. Let FF : D — R"
be Frechet differentiable. Let * € D such that F(z*) = 0 and J(z*) is non
singular. Let us set

_NF=) = Fy) = J(=")(z = y)ll2

w(x,y)— ) Vl‘,yED.
Iz = yll2

Let S(r) = {x : ||x*—xz||2} < r} and let R > 0 such that S(r) C D for0 <r < R.
Then, for any 0 < r < R, define

(8) w(r)=sup w(z,y).
(#v)ES ()

[ee]
Accordingly, we assume that, for every 0 < ¢ < 1, it s lim Zw(akr) =0.
r—0 s

Theorem 2.1 Let Assumptions 2.1 hold. For everye € (0,1) there exist ad > 0
and a np > 0 such that if ||z* — xo||lga <6, [|[J(z*) — Al < npandep <eg <€
for each k, then By is invertible, the sequence of iterates {zy} converges to z*
and

(9) le* — zxtallma < e [[z" — axl|ma

Moreover if lim e, = 0, the convergence is q-superlinear.
k— o0

The proof of the theorem is reported in [1].
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3. — Numerical results

In this section we report some numerical results in which we solve the sub-
problems (4) concurrently with the iterative Lanczos algorithm LSQR [6]. We
present also the results of the Cimmino algorithm applied to a linear problem
(the nonsymmetric Sameh problem) since the parallelism of the whole Newton-
Cimmino method essentially depends on the performance of the solver of the
linearized system. In this section we always assume that the number of proces-
sors corresponds to the number of blocks, 1.e. p = ¢q.

We now briefly describe the main features of the test problems, which come
from discretization by 5-point Finite Differences of linear and nonlinear PDE.
In the three test cases the domain € is the unitary square, discretized into a
regular ! x [ grid with a total number of unknowns equals to n =1 x [ (I =64 in
our runs).

e Poisson problem,

3

_Au_71+x2+y2

=0, in Q

u(0,y) =1, u(l,y)=2-¢Y, wu(x,0)=1, wu(z,1)=2-—¢".
e Bratu problem [2]
(10) —Au—Xe* =0 in Q, u=0 on 09, AeR

It is known that there exists a critical value of A, A* such that problem
(10) has two solutions for A < A* and no solutions for A > A*.

e Sameh problem [9]

—Au+ 1000 €™ (uy — uy) =0, u=xz+y on JQ.

All the results are obtained on the CRAY T3E installed (1998) at CINECA,
Bologna, Italy. The outer exit test is based on the relative residual ||F(zg)|| <
€1 ||F(x0)||- At each nonlinear iteration kcg Cimmino iterations are performed
until the following test is satisifed: ||7x,m|| < €2||F (2)||. Each of these iterations
essentially consists of a conjugate gradient procedure in which the pseudoresi-
duals 6; ; (4) are concurrently computed by kpsor LSQR iterations, within a
tolerance 3. The Fortran code runs under MPI implementation. Table 1 refer
to LSQR Inexact Newton-Cimmino method. As already remarked in [1], we
may note that the most expensive part of the algorithm is represented by the
LSQR solution of the underdetermined subproblems (see Table 3). From this
Table it is worth noting that with p = 1 the Cimmino method acts as an ezact
preconditioner applied to n x n problem and hence the solution is attained at
the very first iteration (with krsor = 2258 LSQR iterations). With p > 2,
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Table 1: Time (in seconds) and speedups 75/T, obtained with the Inezact
Newton-Cimmino method. Moreover, the average number of outer ke, the
inner kpsgr iterations performed at each step and the overall number of LSQR
iterations are shown.

Poisson problem, g1 =103 g5 = 1077
n = 4096 p=1 p=2 p=4 p=8 | p=16 | p=32
Time 34.93 || 353.47 | 233.93 | 122.12 | 53.83 | 27.14
speedup - 1 1.51 2.89 6.56 13.02
knewT 2 2 2 2 2 2
kca 1 89 212 303 391 525
krsqr 4276 1715 813 372 161 68
kca % krsqr 4276 || 165400 | 176960 | 113920 | 62841 | 35428
Bratu problem, g1 =107% ey = 1077,
n = 4096 p=1 p=2 p=4 p=8 | p=16 | p=32
Time 43.04 | 537.12 | 294.13 | 197.45 | 108.99 | 69.72
speedup - 1 1.82 2.72 4.92 7.70
knewT 4 4 4 4 4 4
kca 1 48 86 141 230 318
krsqr 1300 1021 341 278 119 62
krsqr x kca 1300 49000 | 47888 | 40336 | 27512 | 19676
Sameh linear problem, g9 = 1075,
n = 4096 p=1 p=2| p=4| p=8|p=16| p=32
Time 9.4 28.7 18.5 11.4 8.2 6.1
speedup - 1 1.6 2.5 3.5 4.7
LSQR time (%) | 99.9% || 99.8% | 99.7% | 99.2% | 96.3% | 96.1%
ke 1 28 45 64 90 127
krsqr 2258 384 211 118 73 38
kca X krsqr 2258 10740 9481 7542 6569 4843

the number of Cimmino iterations and the corresponding CPU time increase
largely, due to the ill-conditioning of the Laplace equation. For these problems,
it is therefore reasonable to evaluate the performance of the parallel Cimmino
method with respect to the Ty CPU time (p = 2). The speedups reported in
Table 1 are consistently computed as S, = T3/T,, p > 2. In other problems [1],
this behavior does not occur. In Table 1, we finally note that starting from 8
processors we obtain a total CPU time which is less than the p = 1 CPU time.
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Figure 1: Pattern of the Sameh linear test problem after the reordering in 7
row-orthogonal blocks

4. — Row-orthogonal partitioning

To overcome the problem of the costly solution of the least squares subpro-
blems (4), we adopt a suitable block row partitionings of the matrix A in such
a way that A;AT =1, i=1,...q, and consequently, A;l' = AT This allows to
simplify the solution of the least squares subproblems at each step of the inner
iteration. This partitioning [8] is always possible for every sparse matrix and
produces a number g of blocks A; whose rows are mutually orthogonal. As an
example, we show in Figure 1 the pattern of the Sameh linear test problem after
the reordering in 7 row-orthogonal blocks. The numerical results relative to the
row-partitioning for the same test problems of section 1 are shown in Table 2.

From Tables 1 and 2 we can make the following observations. The Conju-
gate Gradient applied to the row-orthogonal partitioned matrices takes a larger
number of iterations with respect to the LSQR case. For example, in the Pois-
son test case the number of outer iterations are constantly equal to 1123 in the
orthogonal case while they range from 1 to 525 using the LSQR algorithm. The
same behavior is evidenced by the other test problems.
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Poisson problem, g1 =107% ey = 1077,
n = 4096 p=1 p=2 p=4 p=28 p=16
Time (speedup) | 7.22 || 5.74 (1.3) | 5.79 (1.3) | 6.05 (1.2) | 6.83 (1.1)
knEwT 2 2 2 2 2
koo 1123 1123 1123 1123 1123
Bratu problem, g1 =107% e, =107°.
n = 4096 p=1 p=2 p=4 p=2_8 p=16
Time (speedup) 6.70 || 5.11 (1.3) | 4.96 (1.4) | 5.33 (1.3) | 8.01 (0.8)
knpw 4 4 4 4 4
kca 630 630 630 630 630
Linear problem, g9 =107%
n = 4096 p=1 p=2 p=4 p=38 p=16
Time (speedup) | 3.16 || 2.30 (1.4) | 2.00 (1 6) | 2.04 (1.6) | 2.30 (1.4)
kca 696 695 694 694 694

Table 2: Time (in seconds), speedups 77/7,, number of outer and inner ite-
rations kxgwr, kca, obtained for solving the three test problems, using the
row-orthogonal partitioning.

On the contrary, the orthogonal variant of the algorithm is more convenient
from the point of view of CPU time, as can be seen by comparing the overall CPU
times in the three test cases for a fixed number of processors. Note that now a
single iteration is much less costly than in the LSQR algorithm, since the solution
of a linear subproblem is replaced by a cheap multiplication for a diagonal matrix
(or even the identity). Moreover, the speedups in the second algorithm are
correctly computed as T /T}, because in this case the CPU time decreases from
1 processor forward. However, they are not completely satisfactory, reaching the
maximum value of 1.4 for p = 4 processors. This fact is mainly due to the cost of
the communication routine MPI_ALLREDUCE which performs the communication
of the local pseudoresiduals and their sums on every processor. This operation
Table 3 refers
to the linear problem, and yields the time spent by the most expensive routine
(the matrix-vector product) and by the MPI_ALLREDUCE routine. Note the good
speedup obtained by the matrix-vector product, while the time spent by the
MPI_ALLREDUCE routine becomes a large part of the overall CPU time as the
number of processors increase, going to more than 50% in the case with 16
processors. Differently, in the LSQR case the times spent by the communication
represent a little portion compared to the much higher times required to solve
the least squares subproblems.

is costly, and its cost increases with the number of processors.
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Table 3: CPU time needed by the matrix vector products and by the reduce
operation in the linear test case.

p |w=Av (T,/Tv) | w= ATv (T,/Ty) | mpi.allreduce (%) | overall
1 0.70 (-) 0.80 ) 0.18 (06) 3.16
2 0.35 (2.0) 0.43 (1.8) 0.46 (20) 2.30
4 0.19 (3.7) 0.27 (3.0) 0.75 (25) 2.00
8 0.10 (7.0) 0.18 (4.4) 1.04 (51) 2.04
16 0.05 (13.9) 0.12 (6.7) 1.33 (58) 2.30
5. — Inexact Newton for non linear complementary problems
Let us consider the following system of constrained equations:
F(v,s,z
(11) H(v,s,z) = < (SZe ) )ZO (5,2) >0
where F : R"*?™ — R", is a nonlinear function of v, § = diag(s1,...,5m),
7 = diag(z1,...,2m), e = (1,...1)T. The interior point method for the solution

of (11) requires the solution of the nonlinear system H (z) = 0. Using the Newton
method we have to solve at every iterations a linear system of the form

(12) H'(mk)AJ::—H(J:k)+0'kukeo

where g, = (s¥ zi)/m, o €]0,1[.

An interior point method in which the linearized system is solved approxima-
tely (by means of an iterative method) will be called inezact (truncated) interior
point method. In this framework system (12) becomes

(13) H'(zg)Az = —H(z)) + oxpreo + g

where 7 1s the residual of the iterative method applied to the linear system
satisfying ||rg|| < mgpr, with gy the forcing term of the inexact Newton method
[3]. Global convergence is assured by means of backtracking.

We have applied the inexact interior point algorithm for the solution of the
following obstacle Bratu problem [2] and the Lubrication problem [2].

5.1. = The Bratu-obstacle problem. —

flv) = 21—
T —
zv—v) = 0
zo(vy —v) = 0
s1 = v—Y

(14) S9 = Uy — U
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Table 4: Results for the obstacle Bratu problem with three different mesh sizes
and four values of A (nl=non linear, it= iterations, s=seconds).

A n | nlit. tot linit. CPU (s) [[H]]

1 1024 13 397 0.24 0.12371E-09
4 1024 11 335 0.23 0.21711E-08
6 1024 12 374 0.25 0.13904E-12
1 4096 14 873 2.61 0.12668E-08
4 4096 13 828 2.56 0.13289E-10
6 4096 12 840 2.57 0.44356E-11
1| 16384 15 1779 36.21  0.34762E-08
4 | 16384 14 1700 34.46  0.30286E-09
6 | 16384 14 2021 40.68 0.79480E-09

with the constraint s;,z; > 0, ¢ = 1,2. The nonlinear function f(v) is defined as
fv) = Av — /\hQE(v)e, E(v) = diag(exp (v1), ..., exp (vn)),

where A is the matrix arising from FD discretization of the Laplacian on the
unitary square with homogeneous Dirichlet boundary conditions, v;, v, are the
obstacles and h is the grid spacing.

For the obstacle problem system (13) at step k can be written as

B 0 0 -1 I Av —f + 21— 29 by
Zir 0 0 D 0 Asq —le(v —v) + oppke by
—Zs 0 0 0 D, Asy | = —ZZT(UU —v)+ogpure | = | bs
-7 I 0 0 0 Az —851+v— 1 N
I 0 7 0 0 Az —S9 + Uy — U bs

where D; = diag((v—wi)1,. .., (v—v1)n), and D, = diag((va—v)1, ..., (vua—v)n),
B = f'(v).

Taking into account the simple structure of some of the block matrices, we
can use a Schur complement approach to reduce the original system (5n x 5n)
to a system with n rows and n columns. The Schur complement approach yields
a system in the Av unknown only:

CAv=r, where C= B—{—Dl_lZl +D;1Z2, T’Zb1+Dl_1b2 —D;lbg.

We may note that matrix C' is is obtained by adding to B the two nonnegative
diagonal matrices Dl_lZ1 and D;'7, thus enhancing its diagonal dominance.
The algorithm has been tested for different grids h = 1/32,1/64,1/128 with
values of n = 1024, 4096, 16384, respectively, for different valuesof A = 1,4, 6, 10.
The initial vectors for the experiments are v(®) = () = 2(0) = [1, .../ 1]7 with



PARALLEL INEXACT NEWTON AND INTERIOR POINT METHOD 11

the obstacles v; = [0,...,0]7,v, = [4,...,4]T. For the last A-value we reported a
failure since a number of bactracking larger than the allowed maximun (=5) have
been recorded. Actually, for A > 6.8 the algorithm did not achieve convergence
(this result is well documented in the literature, see [5]). The sequential results
for the cases A = 1,4,6 are reported in Table 4. The CPU times refer to the
computation ob a 600 Mhz Alpha workstation with 512 Mb RAM.

5.2. = The Lubrication Problem. — A very difficult complementary problem,
from the point of view of nonlinearity, is represented by the Elastohydrody-
namic Lubrication Problem [2] which consist of two integral equations coupled
with a partial differential equation — the Reynold’s equation. Each problem is
characterized by the pair (o, A). The discretization of this problems yields a
higly nonlinear dense system of equations. We solve the linearized system with
a direct method.

Table 5: Results for the Lubrication Problem with o = 2.832, A = 6.057

n nl it. CPU
tot Jacobian LU factor. LU solver ||H|
200 14 130 0.61 (46%)  0.28 (22%) 0.01(1%) | 0.18840E-06

1000 19 | 69.41 20.75 (29%)  35.59 (51%)  0.68(0%) | 0.13107E-06
2000 22 | 47859 97.70 (20%) 320.80 (67%) 3.06(0%) | 0.69400F-06

In Table 5 we show the results obtained with @ = 2.832, A = 6.057 using
n = 200,1000 and 2000 points of discretization of the interval [—3,2]. Note
that for large problems the evaluation and factorization of the Jacobian matrix
become the largest part of the total CPU time (80% and 87% in the cases with
n = 1000 and 2000). Work is in progress to ascertain the possibility of using
the Quasi-Newton method which will allow the Jacobian computation J(zg) and
factorization only once, hence drastically reducing the CPU time.

As a final remark, further work is undergoing to apply the parallel Inexact
Newton and Quasi-Newton Cimmino algorithms of Section 3 to the mixed com-
plementary problems.
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