We lose ground: Global assessment of land subsidence extent

A. Dinar and Y. Li
University of California, Riverside, USA

E. Esteban, E. Calvo
University of Zaragoza and AgriFood Institute of Aragon, Spain

G. Herrera-Garcia, P. Ezquerro
Geological Survey of Spain, Madrid, Spain

P. Teatini
University of Padova, Padova, Italy

R. Tomas
University of Alicante, Alicante, Spain

J. Albiac
Universidad Politécnica de Madrid, Madrid, Spain


Depletion of groundwater aquifers along with all of the associated quality and quantity problems which affect profitability of direct agricultural and urban users and linked groundwater-ecosystems have been recognized globally. During recent years, attention has been devoted to land subsidence - the loss of land elevation that occurs in areas with certain geological characteristics associated with aquifer exploitation. Despite the large socioeconomic impacts of land subsidencemost of these effects are still not well analyzed and not properly recognized and quantified globally. In this paper we developed a land subsidence impact extent (LSIE) index that is based on 10 land subsidence attributes, and applied it to 113 sites located around the worldwith reported land subsidence effects. We used statistical means to map physical, human, and policy variables to the regions affected by land subsidence and quantified their impact on the index. Our main findings suggest that LSIE increases between 0.1 and 6.5% by changes in natural processes, regulatory policy interventions, and groundwater usage, while holding all other variables unchanged. Effectiveness of regulatory policy interventions varies depending on the lithology of the aquifer system, in particular its stiffness. Our findings suggest also that developing countries are more prone to land subsidence due to lower performance of their existingwater governance and institutions.

Back