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Elementi Finiti Misti e Volumi Finiti per la soluzione

del problema di flusso e trasporto di contaminanti ra-

dioattivi pesanti in mezzi porosi

riassunto

In questa Tesi viene sviluppato un metodo numerico accurato ed efficiente per risol-
vere problemi accoppiati di flusso e trasporto di contaminanti radioattivi in acque
sotterranee. Il lavoro è finalizzato, soprattutto, allo studio del sito più contaminato del
mondo, il lago Karachai, negli Urali del Sud (Russia). Questo lago fu utilizzato, fin dagli
anni cinquanta, per immagazzinarvi residui radioattivi provenienti da esperimenti nucleari
e, successivamente, come discarica dei rifiuti liquidi radioattivi della centrale nucleare di
Mayak. Per comprendere la gravità del problema, basti pensare che la quantità di con-
taminanti radioattivi presenti nel lago Karachai è maggiore, in termini di radioattività, a
quanto rilasciato dall’incidente di Chernobyl nel 1986. Inoltre, bastano appena poche ore
sulla riva del lago per ricevere una dose fatale di radiazioni.

Questa ricerca rientra nell’ambito del progetto RaCoS, un contratto europeo at-
tivo presso il Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate
dell’Università di Padova, di cui coordinatore è il prof. G. Gambolati. Il progetto ha come
finalità lo sviluppo di un modello predittivo del trasporto di radionuclidi nell’acquifero
sottostante il lago Karachai. Tale modello dovrà essere utilizzato per la valutazione
dell’efficienza di tecniche di contenimento atte alla prevenzione della contaminazione da
sostanze radioattive dei fiumi che scorrono nelle vicinanze del lago.

La centrale di Mayak riversa nel lago sostanze radioattive quali Cs137 e Sr90 assieme a
soluzioni saline ad alta densità. Queste soluzioni pesanti infiltrano nel terreno trasportando
con sè i radionuclidi. La simulazione dei processi di trasporto è dunque governata dal
modello matematico del flusso di densità: un sistema nonlineare formato dall’equazione di
flusso del fluido e di trasporto dei contaminanti. Per risolvere numericamente il problema
accoppiato di flusso e trasporto, noi consideriamo lo schema iterativo di Picard, risolvendo
per prima l’equazione del flusso, calcolando, quindi, il campo delle velocità e risolvendo,
infine, l’equazione di trasporto, che fornisce, dunque, la concentrazione del contaminante.
Questa procedura è ripetuta fino a che non si ottiene convergenza (pag.93). Per ottenere
soluzioni accurate, è fondamentale che sia accurato il campo delle velocità. Inoltre, visto
che in problemi reali i domini sono irregolari, è opportuno operare su griglie non strut-
turate. L’originalità di questo lavoro consiste nel risolvere il problema di flusso e trasporto
(pag. 89) combinando un metodo agli Elementi Finiti Misti Ibridi (EFMI) standard
per la soluzione del problema di flusso, con una tecnica originale di time-splitting per la
soluzione del problema di trasporto, entrambi sviluppati su griglie non strutturate.

L’approccio degli EFMI garantisce proprietà come quella della conservazione della
massa e velocità conservative, assicurandoci un campo di velocità accurato.

La tecnica di time-splitting per il trasporto ci permette di ottenere soluzioni altret-
tanto accurate per la concentrazione, in quanto i due termini di avvezione e dispersione
nel trasporto vengono risolti separatamente considerando le discretizzazioni migliori che
garantiscano soluzioni efficienti e, per il caso dell’avvezione, capaci di catturare bene gli
shocks e le discontinuità. Perció uno schema ai Volumi Finiti (VF) è utilizzato per risol-

v



vere la parte avvettiva dell’equazione di trasporto, mentre lo schema agli EFMI è usato per
la parte dispersiva. La scelta è stata guidata oltre che da ragioni di accuratezza, robustezza
ed efficienza dei due metodi, anche dal fatto che sono entrambi basati sulla formulazione
debole dell’equazione di partenza e usano simili spazi funzionali.

Il time-splitting è spiegato nel Capitolo 4, dove viene dapprima descritto uno schema
del second’ordine nello spazio e del prim’ordine nel tempo, con la possibilità di utilizzare
diversi passi temporali per l’avvezione e per la dispersione (pag. 65), e, in seguito, viene
considerata un’estensione al second’ordine anche nel tempo (si vedano, a proposito, il
teorema e il lemma di pag. 79 e pag. 84, rispettivamente). Gli esempi numerici confermano
la validità del metodo, in quanto le soluzioni rivelano diffusione numerica minima senza
oscillazioni, conservano la simmetria e sono capaci di catturare bene gli shocks.

Avendo, dunque, due strumenti validi per risolvere il flusso e il trasporto, si può
affrontare la risoluzione del problema accoppiato, cui è dedicato tutto il Capitolo 5. La
procedura numerica viene sperimentata su un caso test della letteratura, il problema di
Elder (pag. 95): i risultati confermano che l’approccio utilizzato è accurato, non presenta
oscillazioni numeriche nè introduce eccessiva diffusione numerica come accade con metodi
più convenzionali. Inoltre, la presenza di griglie non strutturate non influenza la soluzione
ma le simmetrie sono ben conservate. Tutto ciò suggerisce di utilizzare questa tecnica
per risolvere situazioni più complesse, come ad esempio, quella del lago Karachai, cui è
dedicata l’ultima parte del Capitolo (pag. 96).

I Capitoli 4 e 5 evidenziano, dunque, i risultati ottenuti nel corso della ricerca di
Dottorato. La parte iniziale della Tesi è, invece, di carattere più introduttivo. Infatti,
mentre il Capitolo 1 ci dà una visione generale del lavoro svolto, i Capitoli 2 e 3 forniscono
gli strumenti di base utilizzati per risolvere il problema accoppiato di flusso e trasporto, cioè
i VF e gli EFMI. In questo modo si ha un quadro completo ed esauriente delle equazioni
di avvezione e di dispersione e dei metodi numerici utilizzati per risolverle. L’appendice
finale, inoltre, presenta alcune note riguardanti l’uso delle norme per il calcolo dell’errore,
ed alcuni rudimentali concetti di idrologia.
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Mixed Finite Elements and Finite Volumes for the so-

lution of density dependent flow and transport of ra-

dioactive contaminants in porous media

Abstract

In this Thesis a numerical method that is accurate and efficient at the solution of the
coupled flow and transport problem in groundwater is developed. The work is particu-
larly aimed at studying the most contaminated site on earth, Lake Karachai, in the South
Urals (Russia). In the 1950s, this lake was used as storage reservoir for medium level ra-
dioactive wastes from nuclear tests, and as a repository for liquid radioactive wastes from
the nearby Mayak nuclear plant. The problem is very serious: the total amount of radioac-
tivity in Lake Karachai is comparable to that released by the 1986 Chernobyl accident.
For example, a person standing on the shoreline of the lake may receive a fatal dose of
radiation in just few hours.

This research is part of the RaCoS project, a Research contract funded by the Eu-
ropean Union, whose coordinator is the Department of Mathematical Methods and Models
for Scientific Applications of the University of Padova (Prof G. Gambolati). The project is
aimed at devoloping a predictive model of radionuclides transport in the aquifer underly-
ing Lake Karachai. This model must be used to evaluate the effectiveness of containment
measures for preventing radioactive contamination of the rivers flowing near the lake.

The Mayak plant dumps in the lake radioactive wastes containing cesium-137 and
strontium-90 together with high density saline solutions. These heavy solutions infiltrate
through the soil and carry with them the radionuclides. The simulation of the waste trans-
port processes is thus governed by the so-called mathematical model of density-driven flow:
a nonlinear system of partial differential equations formed by the coupled fluid flow and
contaminant transport equations. The usual procedure to numerically solve the coupled
flow and transport problem is given by the Picard iterative procedure, by which first the
flow equation is solved, then the velocity field is calculated, and, finally, the transport
equation is solved for the concentration values. The iteration is repeated until convergence
is achieved (pag.93).

To obtain accurate solutions, accurate evaluation of velocity fields is required. In
addition, since real world simulations generally involve irregular boundaries, it is important
to work on general unstructured grids. The originality of this work consists in solving the
flow and transport problem (pag. 89) by combining a Mixed Hybrid Finite Element
(MHFE) method for flow with a time-splitting technique for transport, both developed
on unstructured grids.

The MHFE approach preserves properties as conservation of mass and conservative
velocities, leading to accurate velocities field. The time-splitting technique for transport al-
lows accurate solution for concentration, since advection and dispersion in transport are
solved separately, by considering the best discretizations available to get efficient solutions
and, in the case of advection, capable of well capturing shocks and discontinuities.

To this aim, a Finite Volume (FV) scheme is used for solving the advection term
of the transport equation, while the dispersive flux is discretized using a MHFE technique.
The choice of these two schemes is dictated, on one hand by their accuracy, robustness and
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efficiency in handling nonuniform meshes and highly variable coefficients. On the other
hand, both FV and MHFE are based on the weak formulation of the governing equation
and use similar functional spaces for the approximation of the dependent variable, making
them ideally suited for combination in a time-splitting approach.

The time-splitting technique is developed in Chapter 4. First a second order ac-
curate in space and first order accurate in time scheme, with different time step sizes for
the advection and dispersion terms is presented (p 65). Next its extension to second order
accuracy in time is considered (see theorem and lemma in pp 79 and 84, respectively). Nu-
merical examples ascertain the validity of the method and show that the solutions obtained
with the proposed scheme display small amount of numerical diffusion, preserve simmetry
and well capture discontinuities.

With the tools thus developed the coupled flow and transport equations, to which
the entire Chapter 5 is devoted, are tackled. The numerical procedure is tested on a case
taken from literature, Elder’s problem (p 95): the results confirm that the approach is ac-
curate, does not present numerical oscillations, and does not introduce excessive numerical
diffusion, as it may happen with other types of discretization approaches. Furthermore,
the presence of unsymmetric meshes does not dramatically influence the solution, but sim-
metries are well preserved. This suggests that the technique developed to solve the coupled
flow and transport problem by MHFE method and the time splitting technique can be used
to simulate more complex situations, in particular, the Lake Karachai problem, to which
the final part of the Chapter is devoted (p 96).

As an overview, Chapters 4 and 5 underline the main results obtained during the
PhD research. Instead, the first part of the Thesis is more introductory. Chapter 1 gives a
general idea of the work done, while Chapter 2 and 3 provide the basic tools for solving the
coupled flow and transport problem, that is the FV and MHFE methods. In this way, we
try to present a complete and exhaustive picture about advection and dispersion equation
and numerical methods to solve them.

Finally, in the appendix a few notes about the use of norms to compute error, and
some rudimentary concepts of hydraulic engineering are reported.
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1 Introduction to the problem and motivation for the

study

In 1997 the RaCoS Project (Radionuclide Contamination of Soil and Groundwater at the
Lake Karachai Waste Disposal Site (Russia) and the Chernobyl Accident Site (Ukraine))
was financed by the European Union D.G. XII under the 4th Framework RTD premises [48].
It is an INCO/COPERNICUS project (Cooperation with NIS Countries), whose coordi-
nating partner is the Department of Mathematical Methods and Models for Scientific
Applications of the University of Padova (Prof G. Gambolati). The other partners are
the Center for the Research and Development of High Studies in Sardinia (CRS4), the
Department of Water Management of Delft University of Technology, the Institute of En-
vironmental Geology of Russian Academy of Science in St. Petersburg, and the Research
and Development Center of Radioecological Studies of the National Academy of Science
in Ukraine.

The main objectives of the RaCoS project are to implement appropriate modelling
techniques to investigate the characteristics of radioactive contaminants and the processes
that control their spreading, to assess the present and future situation with respect to
the contaminated area, and to evaluate containment and remediation measures for the
mitigation of pollution and the restoration of subsurface resources at the Lake Karachai
(Russia) and Chernobyl (Ukraine) sites [49].

For this purpose, the problem at the Lake Karachai site is concerned with the
simulation of the movement of radioactive heavy brines (nitrates carrying with them ra-
dionuclides) infiltrating from the lake into the Quaternary aquifer and possibly threating
contamination of rivers in the area [48]. The modeling study is performed by means of
a three-dimensional Finite Element code (CODESA-3D) solving the coupled density de-
pendent flow and transport groundwater equations [24]. During the course of the study,
concerns were expressed about the effects of the large amount of numerical diffusion neces-
sarily introduced by CODESA-3D to maintain stability. It was argued in fact that artificial
dispersion and/or negative concentrations (even though with small absolute values) could
drastically affect the fate of the contaminant by altering the adsorption/desorption pattern
of the nitrates onto solid grains, thus changing the speed at wich the contaminant plume
moves. For this reason, it was decided to develop a highly accurate two-dimensional model
used to verify the results of CODESA-3D.

In this Thesis, we develop a two dimensional code based on the combination of a
Mixed Hybrid Finite Element (MHFE) method for the solution of the flow equation, with
a time-splitting technique to solve the transport equation. In the time-splitting technique
dispersion and advection fluxes are splitted into two separate partial differential equa-
tions (PDEs) and discretized by a triangle-based high resolution TVD Finite Volume (FV)
scheme and a MHFE technique, respectively. The combination of MHFE and FV in this
fashion guarantees a high accuracy of the solution with introduction of minimal numerical
diffusion while maintaining stability and without ever producing negative concentration
values.
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Figure 1.1: Location of the Chelyabinsk province

1.1 The Lake Karachai: an overview

There are several surface reservoirs located within the South Ural province of Chelyabinsk
in Russia (see Figure 1.1) that have been operated for over 45 years for storage of medium
and low level radioactive liquid wastes. The greatest threat to the subsurface environment
is represented by leakage from the Lake Karachai, filled with medium level wastes, that has
caused a subsurface contaminant plume. According to the Worldwatch Institute report of
1991 on nuclear waste, Lake Karachai is the most polluted site on earth. Lake Karachai
was constructed inside the grounds of the Mayak Chemical Combine, Russia’s main nuclear
reprocessing plant and formerly a major nuclear weapons production site. Since the 1950s
it was used as a storage reservoir for medium level wastes from nuclear tests, and to hold
liquid nuclear wastes previously dumped in the River Techa by the Mayak NPP (Nuclear
Power Plant). It is estimated that from 1949 to 1951 Mayak discharged about 2.76 million
Ci of liquid radioactive wastes into the River Techa.

When the River Techa was dammed in 1956 and 1963, releases of irradiated waters were
reduced. However, the series of pools and marshes created by the dams continue to be a
source of pollution. The Assanov Marshes, which cover a 30 km2 area below dam number
11, contains about 6000 Ci of strontium-90 and cesium-137 and is a continuous open source
of radioactivity into the River Techa.

In 1957 one of the storage tanks containing radioactive sediments exploded, spread-
ing irradiation over an estimated 23000 km2 area. After this disaster, about 10500 people
along the Techa river were evacuated. Contamination of the area was more than 1 Ci/km2.
About 20 millions of different radionuclides were released to the environment as a result
of the accident and led to the formation of the East Ural Radioactive Tracer.

It is estimated that the total accumulated activity of these wastes is up to 120
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millions Ci of high-level waste, which is comparable to the total amount released by the
1986 Chernobyl accident [48]. Another point of comparison is offered by the fact that the
total amount of radioactive discharges from the Russian Navy fleets adds up to only 0.5
per cent of the radioactivity in Lake Karachai. In 1991, U.S. experts measured a dose
rate of 300 to 600 millirems per hour near the shores of the lake, which is three to six
times the exposure permitted per year by U.S. regulations. It was estimated that just one
minute standing on the shore without full protection would mean certain death. At the
present time, a person standing at some points on the shoreline would receive a fatal dose
of radiation in a few hours.

Efforts have been made to fill in the lake with large rocks and concrete, and just
over a third of the project to close Lake Karachai has been completed. The decontam-
ination plan involves covering the area with u-shaped blocks to keep radioactive silts at
the bottom of the lake, and filling in the water with gravel. The project has received only
meagre funding each year, and does not yet include any measures to prevent downward
contamination.

If the underground pollutants beneath Karachai reach the Irtysh River system, the
radioactive contamination could eventually reach the Artic Ocean. The plume of polluted
water from the lake is drifting at a rate of approximately 80 m/y toward the Irtysh water
system.

The plume is made up mainly of heavy brines (nitrates) that carry with them the
radioactive ions. Being heavier than pure water, the brine movement is driven downward
by gravity effects and spread laterally by the regional flow regime. Because of the high
density of these brines (ρ ∼ 110 Kg/m3) gravity effects introduce instabilities in the flow
regime causing fingering in the concentration plume. The main flow direction is however
downward and the pollutants tend to accumulate at the bottom of the aquifer.

The Lake Karachai site represents a unique field laboratory for studying and solving
complex problems of radionuclide migration. In fact, monitored concentrations of some ra-
dionuclides exceed the safety standard level by up to 6 orders of magnitude. Increasing in
volume, the plume moves toward the zones of groundwater discharge - the velocity of the
advancing front of the contaminant plume ranges between 0.2 and 1.5 m/d - where obser-
vations reveal that radionuclides are already being released into the surface environment
at streams and well-fields, thus potentially contaminating springs and source of drinking
water. An analysis of monitoring data shows that the contaminant plume is of ellipsoidal
shape in plan view and that the preferential flowpaths of brines differ considerably from the
direction of the regional natural-gradient flow. Cross sectional groundwater quality strat-
ification results from the differences in density between radioactive brines and ambient
water.

The geological cross section at the Lake Karachai site is represented by fractured
moderately metamorphosed effusive Lower-Silurian rocks. Under natural conditions ground-
water is recharged primarily by precipitation. Moreover, being the Lake Karachai located
within the watershed between two river valleys (the Myshelyak and Techa, respectively),
these valleys serve as groundwater discharge area. The total aquifer transmissivity has
been estimated according to the data of about 200 multi-well pumping tests and slug tests.
The test results have demonstrated the complex and strongly heterogeneous nature of the
transmissivity in this area.

The brines recharging into the aquifer are radioactive and of high density. There
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are about 100 observation and prospecting wells at the Lake Karachai site. It has been
established that the solutions contain a wide range of long-living artificial radionuclides
(such as strontium-90, cesium-137, ruthenium-106, cobalt-60, cerium-144, and isotopes of
uranium and plutonium).

The following physical and chemical processes are considered to be among the most
important at the Lake Karachai site: density-dependent advection, which dramatically en-
hances the displacement of natural subsurface water and results in highly irregular move-
ments of the brines; advection due to natural-gradient flow in strongly heterogeneous frac-
tured rocks; longitudinal and transversal dispersion; diffusion of radionuclides into porous
matrix; radioactive decay; physical and chemical interactions, in particular, adsorption
onto fracture walls. This last process retards the movements of individual radionuclides
with respect to the transport of principal chemical components. Moreover, depending on
the process of interaction, the mass transport potential of the contaminant may be either
enhanced or deteriorated [48].

One of the actions included in the decontamination plan for the Mayak area consists
in eliminating the discharge of radioactive waste in the Lake Karachai. After closing the
lake as a liquid reservoir, the major input of radioactive contaminants from the surface
will be caused by infiltration of water moving through the lake bottom deposits and the
underlying rock. As this water is supposed to be of a low total solid content, it would
not follow the dense plume pathways. Therefore, this part of radioactive contamination
will be spreading to the river Myshelyak valley in the North-East direction, in accordance
with the main flow in the most permeable section of the aquifer. As the radionuclides
transport in this case would not be controlled by the brine movement, the appropriate
plume is supposed to be characterized by a very wide transition zone, which makes the
reliable forecast of radionuclides inflow into the river rather questionable. The appropriate
scenarios of the process are currently under investigation.

As for the dense plume remnants, their further fate is two-fold. The brines will
partly spread to the lower portion of the aquifer and the underlying aquitard while the
lighter part will tend to move upwards towards the river Myshelyak. All this means that
the radionuclides will go upward mostly along the river valley. In this connection protective
measures against surface water contamination need to be substiantiated. The groundwater
technical remediation at this site seems unreal. The most radical measure of this sort could
be connected with “pump-and treat” approach. At the same time, it is most questionable
that such an approach could be realized on practice. Natural remediation approach, i.e.
the underground spaces are sacrified in favor of the surface water protection and used as a
natural reactor, seems the only reliable alternative. Such an approach relies mostly upon
some rigid limitations for the water usage and upon the natural attenuation effects of the
groundwater [31]. Containment strategies need to be investigated.

The mathematical model of the Lake Karachai waste disposal site requires the anal-
ysis of brine dynamics. Since the brine component affects fluid density, and the hydrody-
namic dispersion is depedendent on the local velocity field and brine concentration gradient,
the mathematical model of the Lake Karachai, represented by flow and advective-dispersive
transport of the dense brine, is strongly coupled. These coupling cause nonlinearities in
the equations and preclude analytical solutions, with significant challenges for numerical
simulation. Another major source of nonlinearity enters the equations through velocity
dependent hydrodynamic dispersion and the advective transport [41, 44].
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For all these reasons, we need accurate evaluation of the velocity field and of the
advective part of the trasport equation to obtain an accurate simulation of the brine
movement.

1.2 The mathematical model

The mathematical formulation governing the contamination process at the Lake Karachai
is given by a coupled system of variably saturated flow and miscible salt transport equa-
tions [24]

σ
∂ψ

∂t
= ~∇ · [Ks

1 + εc

1 + ε′c
Kr(~∇ψ + (1 + εc)ηz)] + (1.1a)

−φSwε
∂c

∂t
+

ρ

ρ0
q∗ + q

~v = −Ks
1 + εc

1 + ε′c
Kr(~∇ψ + (1 + εc)ηz) (1.1b)

φ
∂Swc

∂t
= ~∇ · (D~∇c)− ~∇ · (c~v) + qc∗ + f (1.1c)

The above system will be studied in detail in Chapter 5, with appropriate initial and
boundary conditions that complete the mathematical formulation of the flow and trans-
port problem. Here it is important to underline that equation (1.1a) represents the mass
balance for the mixture (or flow equation); equation (1.1b) is the Darcy’s velocity, while
equation (1.1c) is the mass balance for the salt (or transport equation). For the coupled
system of equations describing the movement of density-dependent flow in aquifers, the
usual procedure is to decouple the problem by first solving the flow equation for the un-
known pressure head ψ and the velocity field ~v, next solving the transport equation for the
unknown concentration c. Convergence of this iterative procedure is obtained when the ab-
solute norm of the differences between the pressure head and concentration corresponding
to two successive iterations fall below a prescribed tolerance.

The numerical solution of the coupled flow and radioactive contaminant transport
model in aquifers requires the accurate evaluation of Darcy’s velocities fields. In the simu-
lation of real world aquifers general boundaries consistent with different geological charac-
teristics need to be employed. It is thus important to apply the numerical discretization of
the governing equation in general unstructured grids. This approach may lead to innacu-
rate calculation of velocities, and thus to innacurate predictions and numerical difficulties.
Accurate numerical flow field may be obtained using the Mixed Hybrid Finite Element
approach. MHFE preserves important properties, such as conservation of mass, and leads
to accurate solutions [4].

Accurate simulation of radionuclide contaminant transport may be achieved by
a combined use of the Finite Volume method with high-resolution upwind schemes and
MHFE. FV techniques in conjunction with MHFE offer an ideal framework for the so-
lution of the numerical difficulties arising when advection dominates dispersion. These
difficulties translate into oscillations in the numerical solution that may deteriorate both
the accuracy of the prediction and the convergence of the nonlinear iterations. The com-
bination of FV and MHFE requires the use of a time-splitting technique, whereby advec-
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tion is approximated by a Godunov-type procedure, and diffusion by a MHFE method
[9, 10, 11, 12, 37, 35, 36].

The results obtained for the time-splitting technique show good approximation to
the transport equation without introducing oscillation or numerical diffusion. Therefore
this technique is used to solve equation (1.1c) in the simulation of the Lake Karachai site,
together with the MHFE method that solves equations (1.1a) and (1.1b).

1.3 Literature review

The key words to proceed with the construction of the numerical method for the simulation
of the Lake Karachai site are the following:

• advection equation, Finite Volume scheme;

• dispersion equation, Mixed Hybrid Finite Element method;

• advection-dispersion equation, time-splitting technique;

• density dependent coupled flow and transport of radioactive contaminant in porous
media, MHFE for the flow equation, time-splitting for the transport, Picard iteration.

Advection equation, Finite Volume scheme. Advection equation, a particular hy-
perbolic conservation law, is involved in many practical problems of science and engineer-
ing. In general it is not possible to derive exact solutions of this equation, and therefore
we have to devise and study numerical methods. Special difficulties are associated with
solving advection equations, that must be dealt with carefully in developing numerical
methods. In fact, methods based on standard finite difference approximations may behave
well for smooth solutions but can give disastrous results when discontinuities are present.
Therefore, the theory known about the mathematical structure of these equations and their
solutions needs to be exploited to develop appropriate methods that overcome some of the
numerical difficulties arising from a more standard approach.

Many methods have been derived for advection equations based on finite difference
approximation. A survey of these methods is given in [5, 27, 28, 33]. Methods developed
using standard finite difference discretizations are inaccurate near discontinuities, since
they are based on truncated Taylor series expansions. Thus, different approaches need to
be considered.
A well known class of numerical methods that solve hyperbolic conservation laws are the
Godunov-type methods [42]. These methods use, in some way, the exact solution of the
Riemann problem and do not introduce numerical oscillations or discontinuities. Unfor-
tunately, these methods are only first order accurate; hence the solutions are smoothed
around discontinuities. Based on Godunov methods, other methods have been devel-
oped, the high-resolution methods, which are second order accurate in smooth regions
and give good results, i.e. no oscillations, around shocks [52, 59]. In particular second or-
der total variation diminishing (TVD) schemes [55] and essentially non oscillatory (ENO)
schemes [40] (which surpass the second order accurate barrier associated with TVD meth-
ods) eliminate unphysical spurious oscillations. A survey of Godunov-type methods and
high-resolution methods is given in [25, 33, 54, 57].
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Historically, these numerical schemes have been first derived for one dimensional
scalar conservation laws. Extensions to multidimensions are often obtained by means of
Finite Volume formulations on structured meshes [42]. These are tipically designed in a
dimension by dimension fashion and inherit all the limitations of a structured regular grid.
On the other hand, unstructured grids, such as triangular meshes, offer a greater flexi-
bility when dealing with complex geometries and limit grid orientation effects. However,
extensions of higher order schemes for hyperbolic conservation laws on unstructured dis-
cretizations is not so immediate [46, 16]. A survey of different approaches for the solution
of hyperbolic conservation laws on unstructured grids is shown in [25].

In this Thesis we consider the scheme developed by [16, 34]: it is based on a FV type
discretization and relies on a very local adaptive interpolation idea, which results in com-
putational efficiency.

Dispersion equation, Mixed Hybrid Finite Element method. The numerical solu-
tion of dispersion equation, the groundwater flow equation (1.1a) in conjunction with (1.1b),
whose unknown are pressure and velocity, or the dispersion part related to (1.1c), whose
unknown is concentration, yields a set of discrete values of pressure and velocity, or con-
centration and dispersion flux, respectively.

In the first case, it is important to obtain accurate velocities, especially when pres-
sure and velocity fields are used for the solution of a contaminant transport problem.
Accuracy of the discrete velocities is a necessary but not sufficient condition for a correct
solution of the transport equation. Most importantly, the velocity fields need to conserve
mass. The approach used with Finite Element (FE) simulations may lead to violation
of the mass conservation principle, and thus to inherently inaccurate contaminant fate
predictions [18, 43]. The Mixed Finite Element (MFE) method provides an attractive
framework for these type of problems, because it approximates pressure (or concentration)
and normal fluxes (velocities or dispersive fluxes) simultaneously, and satisfies the mass
conservation principle. At the same time, it maintains the flexibility of FE in handling
general boundary conditions and domain shapes. The MFE method has been extensively
used for the solution of parabolic equations arising in different application fields, such as
groundwater flow or petroleum reservoir simulation. In steady-state problems, i.e. elliptic
equations, the indefinite mixed matrix system becomes ill-conditioned. A common solution
method is the Mixed Hybrid Finite Element technique. Through the definition of an extra
variable representing the pressure (or concentration) head at element edges, MHFE gives
rise to a symmetric positive definite system matrix with good conditioning properties. An
exhaustive analysis of Mixed and Hybrid Finite Element methods can be found, for exam-
ple, in [6, 47, 51].

Special consideration has been devoted to lowest order mixed finite elements [51],
that display global first order of accuracy for both pressure head and velocities fields. In
linear problems, under suitable conditions on the mesh and on the regularity of the solution
of the continuous problem, it has been proved that this method achieves superconvergence
for the pressure head and the normal fluxes in specific points of the mesh [13]. For general
triangular meshes, second order accuracy at midpoint edges in grids formed by triangles
having edges parallel to three different lines has been observed [14].

A development of a two-dimensional MHFE model for the solution of the nonlinear
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equation of variably saturated flow in groundwater on unstructured triangular meshes is
given in [4]. This approach is followed in this Thesis.

Advection-dispersion equation, time-splitting technique. Approximation of the
advection-dispersion equation (1.1c) leads to difficulties when advection dominates because
sharp concentration front tend to develop and move without changing form. Standard finite
difference and finite element methods may not work well for problems with sharp fronts,
showing non-physical oscillations and numerical diffusion. Two approaches are generally
used to overcome these phenomena. One is based on the definition of a proper control
volume where upwind techniques can be used for approximating the advective flux. In this
case the stability of the scheme is obtained by adding an amount of numerical diffusion that
is dependent on the approach used [42, 28]. The other class of methods originates from the
splitting of the dispersion and advection fluxes into two separate partial differential equa-
tions containing one the dispersive and the other the advective term, respectively. These
two equations are then discretized, each with the technique deemed most appropriate.
Splitting allows the combination of explicit time-stepping for advective fluxes with implicit
time-stepping for dispersive fluxes. This approach lessens the stability constraint connected
with explicit discretization of the dispersion term but maintains the possibility of using
efficient explicit schemes for advection. Belonging to this class are the Eulerian-Lagrangian
schemes [39, 7] or the fully Eulerian Godunov-Mixed Methods (GMM) [9, 10, 11, 12]. In
this latter approach, a time-explicit, spatially second-order accurate Godunov method is
used to treat advection, and a time-implicit, spatially second order accurate Mixed Finite
Element method is used for modeling dispersion.

The time-splitting technique developed in this Thesis is similar in spirit to the
GMM approach, by considering a triangle-based, high resolution FV scheme [46, 16, 34] to
discretize the advective term, while the dispersive flux is discretized using a Mixed Hybrid
Finite Element (MHFE) technique.

Density dependent flow and transport of radioactive contaminants in porous
media, MHFE for the flow equation, time-splitting for the transport, Picard it-
erations. Coupled flow and transport equations (1.1) represent the mathematical model
of density driven contamination in groundwater [1, 22, 23, 24, 30].

Coupling in system (1.1) is due to the concentration terms in the flow equation (1.1a) and
the head terms that appear in the transport equation (1.1b) via the Darcy velocities. In
the simpler case of non-density dependent flow and transport, the system is coupled only
through the head terms in the transport equation. In this case there is physical coupling,
but mathematically the system can be reduced and solved sequentially, first the flow and
then the transport equation, without iteration. In the density dependent case, the system
is irreducible and any sequential solution procedure requires iteration. To this purpose
the most commonly used algorithm is given by a Picard iterative procedure, as explained
in [24, 41, 44, 45].
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1.4 Schematical content of the Thesis

This work is organized in two parts. In the first we present a review of the FV and MHFE
method, fundamental tools to develop the second part, where the time-splitting technique
to solve transport equation and some applications to the coupled flow and transport prob-
lem (and, in particular, to the Lake Karachai problem) are exposed.

1.4.1 Part I. Numerical Tools

Chapter 2 is devoted to the numerical approximation of advection equations by the FV
method. To this aim, the resolution of the Riemann problem for hyperbolic conservation
laws is given, including the classical notions of integral and differential form, classical and
weak solutions, rarefaction and shock waves, entropy conditions.

Numerical approximation of hyperbolic conservation laws by Godunov-type meth-
ods are considered next: for the sake of completeness special emphasis is devoted to the
study of Godunov and van Leer’s methods for one-dimensional spatial case. Numerical ex-
amples with both periodic and non periodic boundary conditions validate the theoretical
statements.

The two-dimensional spatial case is studied at the end of Chapter 2. After the
definition of the Finite Volume method and the presentation of general principles and
properties, the attention is focused on a high resolution triangular FV scheme by following
the scheme developed in [16] and next modified by [34]. Numerical experiments verify the
numerical convergence of the proposed scheme.

Chapter 3 is devoted to the development of the MHFE method. Some general defi-
nitions and theorems about the Mixed Finite Element method are given. Then, attention
is directed to the presentation of the MHFE formulation by introducing the concept of the
Lagrange multipliers and some superconvergence results.

Since our goal is to solve dispersive flux in groundwater, we develop its numer-
ical approximation by using the MHFE method. Some numerical results complete the
description.

1.4.2 Part II. New results

Chapter 4 is devoted to the development of a time-splitting technique. This novel approach
to solve advection-dispersion equation is dictated by the fact that standard finite difference
and finite element methods may not work well for problem with sharp fronts, showing non-
physical oscillations. The time-splitting technique overcomes this phenomenon combining
numerical stability with minimal artificial diffusion: the dispersion and advective fluxes
are splitted into two separate partial differential equations, containing one the dispersive
and the other the advective term, respectively. Then, these two equations are discretized,
each with the technique deemed most appropriate. A time-explicit, spatially second order
accurate Godunov method is used to treat advection, and a time-implicit, spatially second
order accurate MFE method is used for modeling dispersion. We combine a triangle-based,
high-resolution FV scheme for advection, with a MHFE method for dispersion. Some of
the original results obtained with this technique are presented and showed in this Chapter.

We first consider a scheme of second order accuracy in space and first order in time.
Numerical tests on an analytical one dimensional example ascertain the convergence prop-
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erties of the scheme when advection or dispersion is dominant. Results on a realistic test
case of groundwater contaminant transport confirm the validity of the proposed scheme.
Then, the study of this technique is extended to obtain second order accuracy also in time.
The theoretical presentation is accompanied by some numerical results.

Chapter 5 is devoted to the application of the time-splitting technique in conjunction
whith the MHFE method discretization of the flow equation, to solve the coupled flow and
transport problem. To this aim system (1.1) is studied in detail, taking into account
coupling and nonlinearities. The numerical solution is obtained by means of the Picard
iterative scheme.

A first application to validate the proposed method concerns Elder’s problem, that
represents a fluid flow driven purely by density differences. The results indicate that
the proposed approach is accurate and reliable, does not suffer from numerical oscillation
and does not introduce large amounts of numerical diffusion, as typically done by more
conventional upwind discretizations. Also, the presence of unsymmetric meshes does not
dramatically influence the solution, as reported in the literature for other types of dis-
cretization approaches. This suggests that the technique developed may be efficiently used
to simulate more complex situations. Therefore, we arrive at the object of all our efforts:
application to the Lake Karachai problem.

Finally, an appendix concludes the work: we report some observations, which come
to light during the study of the numerical experiments, about the proper use of norms, and
some notes regarding modeling groundwater that may seem obvious to hydraulic engineers
but not too much obvious to mathematicians.
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2 Finite Volume Methods for the advection equation

In this Chapter we study the numerical solution of the linear advection equation, a par-
ticular case of a hyperbolic conservation law. Our goal is to develop an accurate method
to solve advection-dispersion equation by a time-splitting technique, taking into account
the best discretizations available to solve advection and dispersion, respectively. To this
purpose, we consider the solution of the advection equation by Godunov-type and high-
resolution methods, in one and two dimensions. After a short review of numerical solutions
of hyperbolic conservation laws, we describe one dimensional high resolution Finite Volume
(FV) methods and report some theoretical and numerical results. Next, we concentrate on
triangle based adaptive stencils for hyperbolic conservation laws. Theoretical results are
verified by numerical experiments.

2.1 Introduction to Hyperbolic Conservation Laws

The study of numerical solution of hyperbolic conservation laws is an important and in-
teresting field of research in itself because of the special difficulties associated with the
presence of shocks and discontinuities in the solution. Numerical methods based on sim-
ple finite-difference approximations may behave well for smooth solutions but can give
disastrous results when sharp fronts occur [27]. The study of linear conservation laws is
important for understanding the behavior of a numerical scheme, but it is also very im-
portant to consider that the introduction of nonlinearities changes dramatically the nature
of the problem because it induces a loss of the uniqueness of the solution [33, 54]. The
solution that is physically relevant has then to be properly characterized and the numerical
approximations have to respect this characterization otherwise they would converge to a
solution which has no physical meaning.

2.2 Integral and Differential Form

Hyperbolic scalar conservation laws may be expressed by the following equation:

∂u

∂t
+
∂f

∂~x
= 0 (2.1)

where u : Rd×R→ Rn is a n-dimensional vector of conserved quantities, or state variables,
t is time, f = f(u) is a n-dimensional vector called flux function and ~x ∈ Rd is the spatial
coordinate system. In the following, for simplicity, we consider the case n = 1 and d = 1.

Equation (2.1) derives from physical principles. As an example, we consider the
equation for conservation of mass in a one-dimensional groundwater contamination prob-
lem. Assume that no diffusion nor mechanical dispersion occur and that density of the
contaminant and the water and velocity of the fluid mixture (contaminant-water) are con-
stant.
Let ρ(x, t) be the density of the contaminant at point x and time t. This density is defined
in such a way the total pollutant mass in two sections 1 and 2 is given by the integral of
the density taken between x1 and x2. If no source or sinks are present, the mass contained
in the volume thus identified can change only because of the mixture flowing across the
endsections in x1 or x2.
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Let v(x, t) be the velocity of the fluid mixture at point x and time t. Then its rate of flow,
or flux, past this point, is given by the product ρ(x, t)v(x, t).
The rate of mass change in [x1, x2] is given by the difference in fluxes at x1 and x2:

d

dt

∫ x2

x1

ρ(x, t) dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t)

By integrating this in time from tk to tk+1 (tk+1 > tk) we obtain:

∫ x2

x1

ρ(x, tk+1) dx =

=

∫ x2

x1

ρ(x, tk) dx+

∫ tk+1

tk
ρ(x1, t)v(x1, t) dt−

∫ tk+1

tk
ρ(x2, t)v(x2, t) dt

This is the integral form of the conservation law. To obtain the differential form, we assume
that the functions ρ and v are differentiable functions. Then, the following equalities hold:

∫ tk+1

tk

∂

∂t
ρ(x, t) dt = ρ(x, tk+1)− ρ(x, tk)

and
∫ x2

x1

∂

∂x
(ρ(x, t)v(x, t)) dx = ρ(x2, t)v(x2, t)− ρ(x1, t)v(x1, t).

By substituting these expressions in the previous equation, we obtain:

∫ tk+1

tk

∫ x2

x1

{ ∂
∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)v(x, t))} dx dt = 0.

Since this must hold for any section [x1, x2] and over any time interval [t
k, tk+1], we conclude

that the integrand of this equation must be identically zero, i.e.,

ρt + (ρv)x = 0

This is the differential form of the conservation law for the conservation of the mass and
can be solved in isolation only if the velocity v is known a priori or is known as a function
of ρ (in this case we have a scalar conservation law for ρ), otherwise we can solve this
equation in conjunction with other equations, typically with equations for the conservation
of momentum, i.e. a flow equation, and so we have a system of conservation laws.

2.3 Classical and Weak Solutions

Equation (2.1) must be augmented by some initial conditions and also possible boundary
conditions on a bounded spatial domain. The simplest problem is the initial value problem,
or Cauchy problem, defined for −∞ < x <∞ and t ≥ 0. We must specify initial conditions
only:

u(x, 0) = u0(x) −∞ < x <∞. (2.2)
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It is very easy to see that classical solutions of (2.1)-(2.2) are constant along the charac-
teristics, which are curves (x(t), t) defined by

{

dx

dt
= f ′(u(x(t), t)) t ≥ 0

x(0) = x0
(2.3)

In fact, differentiating u(x, t) along one of these curves, we find the rate of change of u
along the characteristics and we get

du(x(t), t)

dt
=

∂u(x(t), t)

∂t
+
∂u(x(t), t)x′(t)

∂x
= ut + f

′(u)ux
= ut + (f(u))x
= 0,

confirming that u is constant along these characteristics. Moreover, this shows that the
characteristics travel at constant velocity which is equal to f ′(u0(x0)).

Simple arguments show that if u0(x) is increasing (decreasing) and f(u) is convex
(concave), the classical solution of (2.1)-(2.2) is well defined for all t > 0. However, in the
general case, classical solutions fail to exist for all t > 0 even if u0 is very smooth [33, 54].
This happens when infx u

′
0(x)f

′′(u0(x)) < 0: then classical solutions exist only for t in
[0, T ∗] where

T ∗ = − 1

infx u′0(x)f
′′(u0(x))

.

At the time t = T ∗ the characteristics first cross, the function u(x, t) has an infinite slope
– the wave is said to break by analogy with waves on a beach – and a shock forms.

We state this result in the following theorem.
Theorem 2.1. If we solve (2.1)-(2.2) with smooth initial data u0(x) for which

u′0(x)f
′′(u0(x) is somewhere negative,

then the wave will break at time

T ∗ = − 1

infx u′0(x)f
′′(u0(x))

.

Proof. Since along characteristics u(x(t), t) is equal to u0(x0), we can write x(t) =
x0+ tf

′(u0(x0)). We can calculate the blow up time (i.e., the first time when two different
characteristics arrive at same point (x, t)). In this case there are two points, x0 and x0,
such that

x = x0 + tf
′(u0(x0)) = x0 + tf

′(u0(x0)),

that is,

t = − x0 − x0
f ′(u0(x0))− f ′(u0(x0))

= − 1

u′0(ξ)f
′′(u0(ξ))

,

where ξ lies between x0 and x0. Obviously, this expression for t makes sense when
1

u′0(ξ)f
′′(u′0(ξ))

is negative. Thus, the blow up occurs if u′0(x)f
′′(u0(x)) is somewhere

negative: at t = T ∗ the solution forms a shock wave.
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To allow discontinuities, which arise in a natural way in this situation, we define a
weak solution of conservation law.

Definition 2.2. A function u(x, t), bounded and measurable, is called a weak
solution of the conservation law (2.1)-(2.2), if for each φ ∈ C10(R × R+), the following
equality holds:

∫ ∞

0

∫ +∞

−∞
[φtu+ φxf(u)] dx dt = −

∫ +∞

−∞
φ(x, 0)u(x, 0) dx. (2.4)

Here C10(R×R+) is the space of functions that are continuously differentiable with
compact support, that is, φ(x, t) is identically zero outside of some bounded set and so the
support of the function lies in a compact set.

In this way we rewrite the differential equation in a form where less smoothness
is required to define the solution. In fact, the basic idea to define a weak solution of
conservation law is to take the PDE, multiply by a smooth test function, integrate one
or more times over some domain, and then use integration by parts to move derivatives
off the function u and onto the smooth test function. The result is an equation involving
fewer derivatives on u, and hence requiring less smoothness.

2.4 The Riemann Problem

A Riemann problem is simply the conservation law together with particular initial data
consisting of two constant states separated by a single discontinuity,

u0(x) =

{

ul x < 0,
ur x > 0.

(2.5)

As an example, consider Burgers’ equation, in which f(u) = 1
2
u2, so that our conservation

law becomes:

ut + (
1

2
u2)x = 0. (2.6)

This is also called inviscid Burgers’ equation, since the equation studied by Burgers also
includes a viscous term:

ut + (
1

2
u2)x = εuxx. (2.7)

Equation (2.7) is the simplest model that includes the nonlinear and viscous effects of
fluid dynamics. The analitic solution is available through a transformation known as the
Cole-Hopf transformation, because, around 1950, Hopf, and independently Cole, solved
exactly this equation [8, 29]. Thus Burgers’ equation provides an important test for many
proposed numerical methods dealing with nonlinear PDEs.

Consider the Riemann problem applied to inviscid Burgers’ equation (2.6), with
piecewise constant initial data (2.5). The form of the solution depends on the relation
beetwen ul and ur.

First case: ul > ur. In this case there is a unique weak solution,

u(x, t) =

{

ul x < st
ur x > st.
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Figure 2.1: Shock wave: ul > ur.

where

s =
(ul + ur)

2

is the shock speed, the speed at which the discontinuity travels.

Second case: ul < ur. In this case there are infinitely many weak solutions, since
between the points ult < x < urt, there is no information available from the characteristics.
To determine the correct physical behavior we adopt the vanishing viscosity approach by
considering equation (2.7): equation (2.7) is a model of (2.6) valid only for small ε and
smooth u. If the initial data is smooth and ε very small, then before the wave begins to
break the εuxx term is negligible compared to other terms and the solutions to the two
PDEs look nearly identical. As the wave begins to break, the term uxx grows much faster
than ux and at some point the εuxx term is comparable to the other terms and begins to
play a role. This term keeps the solution smooth for all time, preventing the breakdown
of solutions that occurs for the hyperbolic problem. As ε goes to zero the solution of the
viscous Burgers’ equation becomes sharper and sharper and approaches the discontinuous
solution of the inviscid Burgers’ equation. Therefore, the physically correct weak solution
for this Riemann problem is the solution that is stable to perturbations and is obtained as
the vanishing viscosity generalized solution. In the x − t plane the solution forms a wave
from which the characteristics emanate with continuous slopes between ul and ur. This is
called a rarefaction wave or expansion fan and is given by:

u(x, t) =







ul x < ult
x/t ult ≤ x ≤ urt
ur x > urt

Thus, shock or rarefaction waves are the two possible solutions of the Riemann problem.
More generally, for arbritrary flux function f(u) we have the following relation

between the shock speed s and the states ul and ur, called the Rankine-Hugoniot jump
condition:

f(ul)− f(ur) = s(ul − ur). (2.8)
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Figure 2.2: Rarefaction wave: ul < ur.

For scalar problems this gives simply

s =
f(ul)− f(ur)

ul − ur
=
[f ]

[u]

where [·] indicates the jump in some quantity across the discontinuity.
As shown above, there are situations in which the weak solution is not unique and

an additional condition is required to identify the physically relevant solution. Since the
condition that defines this solution as the limiting solution of the viscous equations as ε
goes to zero is not easy to work with, we look for simpler conditions. To this aim the
concept of entropy condition is introduced. We consider the following definition [5, 33].

Definition 2.3. A discontinuity propagating with speed s given by (2.8) satisfies
the entropy condition if

f ′(ul) > s > f ′(ur).

By considering the previous example, when ul < ur the entropy condition is vio-
lated: in fact, characteristics come out of the wave as time advances and the propagating
discontinuity is unstable to perturbations. Therefore the solution is not a shock wave but
a rarefaction wave.

2.5 One dimensional case

2.5.1 Spatial discretization

Let us consider the Cauchy problem for conservation laws (2.1)-(2.2). When we attempt to
calculate the solutions numerically, new problems arise. A finite-difference discretization
of the conservation law (2.1) is expected to be inappropriate near discontinuities, since it is
based on truncated Taylor-series expansions. Indeed, if we compute discontinuous solutions
to conservation laws using standard methods, we typically obtain numerical results that
are very poor. For example, natural first order accurate numerical methods have a large
amount of numerical viscosity that smoothes the solution in much the same way physical
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viscosity would, while a standard second order method eliminates this numerical viscosity
but introduces dispersive effects that lead to large oscillations in the numerical solution.
Therefore we would like to have numerical methods constructed ad hoc to solve hyperbolic
conservation laws, which are accurate in smooth regions and give good results around
discontinuities or sharp fronts. First we will consider Godunov’s method: it uses the
exact solution of the local Riemann problem and does not produce oscillations around
discontinuities. Unfortunately, it is only first order accurate and the solutions display large
numerical viscosity. A generalization of Godunov’s method is represented by van Leer’s
method, an example of high resolution methods, characterized by second order accuracy
on smooth solutions and the absence of spurious oscillations.

Both methods are conservative according to the following
Definition 2.4. Given a uniform grid with time step ∆t and spatial mesh size ∆x,

a numerical method is said to be conservative if the corresponding scheme can be written
as:

vn+1j = vnj − λ(gnj+ 1
2

− gn
j− 1
2

), j ∈ Z n ≥ 0 (2.9)

where vnj approximates u(xj, t
n) at the point (xj = j∆x, tn = n∆t), λ =

∆t

∆x
and g :

R
2k −→ R is a continuous function, called the numerical flux (function), that defines a
(2k + 1)-point scheme.

gn
j+ 1
2

= g(vnj−k+1, . . . , v
n
j+k).

The values v0j are given by initial conditions.
This form of the scheme arises naturally if we view vnj as an approximation of the

average unj of u(·, tn) on the cell [xj−1/2, xj+1/2] (where xj±1/2 = xj ±
∆x

2
), defined by

unj =
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn) dx.

Since the weak solution u(x, t) satisfies the integral form of the conservation law, we have:

∫ xj+1/2

xj−1/2

u(x, tn+1) dx =

∫ xj+1/2

xj−1/2

u(x, tn) dx

−[
∫ tn+1

tn
f(u(xj+1/2, t)) dt−

∫ tn+1

tn
f(u(xj−1/2, t)) dt].

Dividing by ∆x and using the averages unj we get

un+1j = unj −
1

∆x
[

∫ tn+1

tn
f(u(xj+1/2, t)) dt−

∫ tn+1

tn
f(u(xj−1/2, t)) dt].

Comparing this to (2.9), we see that the numerical flux function can be considered as an
average flux through xj+1/2 over the time interval [t

n, tn+1],

gnj+1/2 =
1

∆t

∫ tn+1

tn
f(u(xj+1/2, t)) dt.
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An important property is the consistency with the original conservation law, that is the
numerical flux function g reduces to the true flux f for the case of constant flow:

g(u, u, . . . , u) = f(u) ∀u ∈ R.

For consistency it is sufficient that g is a Lipschitz continuous function of each variable,
i.e. there is a constant K such that

|g(uj−k+1, . . . , uj+k)− f(u)| ≤ K max
−k+1≤i≤k

|uj+i − u|,

for all uj+i sufficiently close to u.
The main advantage of conservative and consistent schemes is that, when they

converge, they converge to solutions whose shocks or discontinuity satisfy automatically
the jump conditions, that is, the discontinuities always travel at the correct velocity. This
important result, which is not true for non conservative or non consistent schemes, is due
to Lax and Wendroff (the proof is given in [33]).

Theorem 2.5 (Lax-Wendroff). Assume that the scheme (2.9) is consistent
with the conservation law (2.1)-(2.2) and that it generates a sequence that converges to
a function u∗ as the gridsizes ∆x, ∆t go to zero. Then, u∗ is a weak solution of the
conservation law.

Godunov’s method. Godunov’s method is an example of a conservative scheme. The
solution is considered piecewise constant over each mesh cell at a fixed time and its evolution
to the next time step results from the wave interactions originating at the boundaries
between adjacent cells. The cell interfaces separate two different states at the left and at the
right side, and the resulting interaction can be exactly resolved by solving a local Riemann
problem. Complete definition of the interaction between adjacent cells is attained when the
time interval over wich the waves are allowed to propagate is limited by the condition that
adjacent Riemann problems do not interfere. This leads to a form of Courant-Friedrichs-
Lewy (CFL) condition.

Godunov’s method can be described as follows [5, 33]:

1. Given data vnj at time t
n, construct a piecewise constant function v̂nj (x, t

n) (see Fi-
gure 2.3) defined by

v̂nj (x, t
n) = vnj xj−1/2 ≤ x ≤ xj+1/2. (2.10)

2. Solve the local Riemann problem at the cell interfaces, that is, on each subinterval
[xj, xj+1] and for t ≥ tn, solve















∂v̂nj
∂t
+
∂f(v̂nj )

∂x
= 0

v̂nj (x, t
n) =

{

vnj , xj < x < xj+1/2
vnj+1, xj+1/2 < x < xj+1

(2.11)
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Figure 2.3: First stage of Godunov’s scheme at time tn.
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Figure 2.4: Linear convection: translation of discontinuity.

3. Define the approximation vn+1j at time tn+1 by averaging the Riemann problem so-
lution v̂nj at the time t

n+1, so that

vn+1j =
1

∆x

∫ xj+1/2

xj−1/2

v̂nj (x, t
n+1) dx. (2.12)

These values are then used to define new piecewise constant data v̂n+1j (x, tn+1) and
the process repeats.

The first and third stages are of numerical nature and can be considered as projection steps,
while the second stage, the physical one, is the evolution step. The basics of Godunov
approach can be exemplified by an application to the simple linear advection equation in
one dimension ut + aux = 0, with a > 0. The first step is independent of the equation to
be solved. The second step is obtained by translation of the discontinuity at the interface
over the distance a∆t as shown in Figure 2.4. The new approximation at time level n+ 1
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results from the averaging of this new state, obtaining

vn+1j =
1

∆x

∫ xj+1/2

xj−1/2

v̂nj (x, t
n+1) dx

=
1

∆x
[a∆tvnj−1 + (∆x− a∆t)vnj ]

= vnj − a
∆t

∆x
(vnj − vnj−1)

In practice Godunov’s scheme is equal to the first-order upwind scheme when solving the
linear advection equation.

More in general, provided we assume the CFL condition

λmax
u
|f ′(u)| ≤ 1

2
,

where λ =
∆t

∆x
so that the waves emanating from the points xj−1/2 and xj+1/2 do not

interact, the solution is obtained by solving a juxtaposition of local Riemann problems and

v̂nj (x, t) = v̂R(
x− xj+1/2
t− tn ; vnj , v

n
j+1), xj ≤ x ≤ xj+1, (2.13)

for all t > tn, where v̂R is the solution of the local Riemann problem. We recall that the
CFL condition is a necessary stability condition stating that the domain of dependence of
the method includes the domain of dependence of the PDE.

In order to derive a general form of the scheme, let us integrate equation (2.11)
over the rectangle

[

xj−1/2, xj+1/2
]

× [tn, tn+1]. Since the function is piecewise smooth, we
obtain:
∫ xj+1/2

xj−1/2

(v̂nj (x, t
n+1)− v̂nj (x, tn)) dx+

∫ tn+1

tn
(f(v̂nj (x

−
j+1/2, t))− f(v̂nj (x+j−1/2, t))) dt = 0,

where we consider the usual notation x+ = lim
x→x+

x and x− = lim
x→x−

x. Using (2.10)

and (2.12), we get

∆x(vn+1j − vnj ) +
∫ tn+1

tn
(f(v̂nj (x

−
j+1/2, t)− f(v̂nj (x+j−1/2, t))) dt = 0

At this point we note that the integral we need to compute in the previous equation is
trivial because the integrand is independent of t. This follows by using (2.13) and from the
fact that the solution of the Riemann problem at xj+1/2 is a similarity solution, constant
along each ray (x− xj+1/2)/(t− tn) = constant. Therefore we have:

vn+1j = vnj − λ{f(v̂R(0−; vnj , vnj+1))− f(v̂R(0+; vnj−1, vnj ))}.
Since the function x −→ f(v̂R(x;ul, ur)) is continuous at the origin because of the Rankine-
Hugoniot conditions, Godunov’s method can be written in the conservative form

vn+1j = vnj − λ{f(v̂R(0; vnj , vnj+1))− f(v̂R(0; vnj−1, vnj ))}. (2.14)

and its numerical flux is given by

g(u, v) = f(v̂R(0;u, v)). (2.15)
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Van Leer’s method. Since the first and third steps of Godunov’s methods are of a
numerical nature, they can be modified without influencing the physics, for instance by
replacing the piecewise constant approximation by a piecewise linear variation inside each
cell. This leads to the definition of a spatially second order accurate scheme, known
as van Leer’s or MUSCL (Monotone Upstream-centered Scheme for Conservation Laws)
method [59]. However, the straightforward replacement of the first-order scheme by a
second-order accurate interpolation leads to the generation of oscillations around discon-
tinuities. To overcome this limitation and achieve the goal of oscillation-free, spatially
second-order accurate schemes, non linear components are introduced. Non linear dis-
cretizations imply that the schemes will be non linear even when applied to linear equa-
tions. This concept was introduced initially by van Leer under the form of limiters, i.e.
functions that control the gradient of the computed solution with the aim of preventing
the appearance of unphysical overshoots or undershoots.

Consequently, we study van Leer’s method as an example of a second-order slope
limiter method. The three main steps of van Leer’s MUSCL approach are the following [25,
27, 59]:

1. reconstruction step: the dependent variable is interpolated using a piecewise linear
function v̂ starting from the cell averages vnj , v

n
j−1, v

n
j+1. To this end define S

n
j to be

the slope on the jth cell calculated using vnj−1 and v
n
j+1. Then

v̂n(x) =











vnj + (x− xj)
Snj
∆x

xj−1/2 < x < xj+1/2,

v̂n(xj−1/2) x ≤ xj−1/2
v̂n(xj+1/2) x ≥ xj+1/2.

(2.16)

Note that taking Snj = 0 for all j and n recovers Godunov’s method;

2. evolution step: the waves are propagated across cell interfaces according to an exact
or approximate solution of a local Riemann problem that uses the interpolated values
v̂n(x) as initial conditions. One solves

{

∂

∂t
w +

∂

∂x
f(w) = 0 x ∈ R, tn ≤ t ≤ tn+1

w(x, tn) = v̂n(x).
(2.17)

This step yields w(·, tn+1).

3. cell-averaging step: vn+1j is obtained by projecting the solution w(x, tn+1) onto the
piecewise constant functions

vn+1j =
1

∆x

∫ xj+1/2

xj−1/2

w(x, tn+1) dx. (2.18)

The cell average of v̂n(x) over [xj−1/2, xj+1/2] is equal to v
n
j for any choice of S

n
j and

thus step 1 is conservative. Since steps 2 and 3 are also conservative, the overall method
is conservative for any choice of Snj . These three steps can be visualized graphically as
in Figure 2.5 in the case of linear advection. Provided we assume some convenient CFL
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Figure 2.5: Visualization of van Leers’s scheme for linear advective flux: a) reconstruc-
tion; b) limiting; c) evolution; d) cell-averaging step.

condition so that the waves issued from the points xj−1/2 and xj+1/2 do not interact,
the solution can be viewed as a juxtaposition of local Riemann problem solution. In
order to derive a more explicit form of the scheme, we integrate equation (2.17) over
[

xj−1/2, xj+1/2
]

× [tn, tn+1],
∫ tn+1

tn

∫ xj+1/2

xj−1/2

(
∂w

∂t
+
∂f(w)

∂x
) dx dt = 0.

We obtain
∫ xj+1/2

xj−1/2

(w(x, tn+1)− w(x, tn)) dx+
∫ tn+1

tn
(f(w(xj+1/2, t))− f(w(xj−1/2, t))) dt = 0

since the flux is continuous, and then by (2.18)

∆x(vn+1j − vnj ) +
∫ tn+1

tn
(f(w(xj+1/2, t))− f(w(xj−1/2, t))) dt = 0

We are left with the evaluation of the numerical flux

gnj+1/2 =
1

∆t

∫ tn+1

tn
f(w(xj+1/2, t)) dt.

Using the midpoint rule, we can write

1

∆t

∫ tn+1

tn
f(w(xj+1/2, t)) dt = f(w(xj+1/2, t

n +
∆t

2
)) +O(∆t2).
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Following [58], define the updated values v
n+1/2
j+1/2,± at time t

n +
∆t

2
by



















v
n+1/2
j+1/2,− = v

n
j+1/2,− −

∆t

2∆x
(f(vnj+1/2,−)− f(vnj−1/2,+)),

v
n+1/2
j+1/2,+ = v

n
j+1/2,+ −

∆t

2∆x
(f(vnj+3/2,−)− f(vnj+1/2,+)),

where










vnj+1/2,− = v̂(x
−
j+1/2) = v

n
j +

Snj
2
,

vnj+1/2,+ = v̂(x
+
j+1/2) = v

n
j+1 −

Snj+1
2

,

Then, solve the Riemann problem at the point xj+1/2 with piecewise constant initial data

v
n+1/2
j+1/2,±















∂ŵ

∂t
+
∂f(ŵ)

∂x
= 0

ŵ(x, 0) =

{

v
n+1/2
j+1/2,− x < xj+1/2

v
n+1/2
j+1/2,+, x > xj+1/2

whose solution is noted as vR(
x− xj+1/2

t
; v

n+1/2
j+1/2,−, v

n+1/2
j+1/2,+).

Replacing w(xj+1/2, t) by vR(0; v
n+1/2
j+1/2,−, v

n+1/2
j+1/2,+), the numerical flux can be approximated

by gnj+1/2 = f(vR(0; v
n+1/2
j+1/2,−, v

n+1/2
j+1/2,+)). This time stepping scheme is equivalent to a two-

stage second order accurate Runge scheme.
The numerical scheme is completely defined after we have specified Snj . As an

example, in the linear advection equation (i.e. f(u) = au with a > 0), if Snj = vnj+1 − vnj
and the advection equation is solved exactly in step 2, then the method reduces to the Lax-
Wendroff method [33]. This illustrates that it is possible to obtain second order accuracy by
this approach. The oscillations which arise with Lax-Wendroff method can be interpreted
geometrically as being caused by a poor choice of slopes. In fact oscillations are created
when the slope in a cell becomes larger than the difference of adjacent mean values. Thus,
a scheme without overshoots around discontinuities can be obtained if excessively large
gradients are avoided. Therefore we have to control each cell at each time step to keep
the gradients within the proper bounds. The generation of oscillations can be prevented
by acting on their production mechanism and introducing nonlinear correction factors, so
called the limiters, that force the method to be total variation diminishing (TVD)(Lax-
Wendroff scheme is not TVD).
We have the following:

Definition 2.6. A numerical method to solve hyperbolic conservation laws is called
total variation diminishing if

+∞
∑

j=−∞
|vn+1j+1 − vn+1j | ≤

+∞
∑

j=−∞
|vnj+1 − vnj |
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The advantage of a TVD scheme stems from the fact that, whenever stability is assured,
it is free of numerical oscillations.

To obtain a slope limiter we follow [57]. Let

Snj = Ŝ
n
j Φ

n
j

where Ŝnj represents the actual slope approximation and Φj = Φ(θ
n
j ) is a limiter function,

defined in such a way that the method is TVD and θnj is the ratio of two consecutive
gradients, i.e.:

θnj =
vnj − vnj−1
vnj+1 − vnj

.

The slope Ŝnj can be defined by

Ŝnj =
1

2
(1 + ω)(vnj − vnj−1) +

1

2
(1− ω)(vnj+1 − vnj )

where ω is a parameter in the real interval [−1, 1]. For ω = 0, Ŝnj represents central
difference approximation to the first spatial derivative of the numerical solution at time
level n.

A TVD scheme is obtained if (see, for example, [33])

Φ(θ) = 0 for θ ≤ 0
and

0 ≤ Φ(θ) ≤ 2θ.
Second order accuracy requires additional conditions on Φ. In fact, when θ → 1, which
means that the numerical solution is smooth, the limiting function must evidently approach
unity [55].

Various limiter functions have been defined in literature. In the subsequent numer-
ical tests we consider the following three limiter functions:

• van Leer’s limiter [59]:
Φ(θ) =

|θ|+ θ
1 + |θ| ,

• minmod limiter that represents the lowest boundary of the second-order TVD re-
gion [33]:

Φ(θ) =

{

min(θ, 1) if θ > 0
0 if θ ≤ 0.

It is a particular case of the minmod function, defined as the function that selects
the number with the smallest modulus from a series of numbers when they all have
the same sign, and zero otherwise. For two arguments:

minmod(x, y) =







x if |x| < |y| and xy > 0
y if |x| > |y| and xy > 0
0 if xy < 0

• the superbee limiter, that represents the upper limit of the second-order TVD region
and has been introduced by Roe [52]:

Φ(θ) = max[0,min(2θ, 1),min(θ, 2)].
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2.5.2 Remark about time integration

As explained in the previous Section, linear schemes with high order of accuracy generate
spurious oscillation wherever the solution is not smooth. To prevent spurious oscillation
the concept of TVD is imposed, making the scheme nonlinear even if applied to a linear
equation.

When explicit Euler is used to approximate the time derivative (first order in time),
the linear version of the scheme (no limiter is adopted) is unconditionally unstable. Only
with the TVD constraint imposed, i.e. the nonlinear version, the scheme is conditionally
stable. In the following we explain why the unlimited linear form of the above scheme is
unconditionally unstable.

Rewriting the Euler scheme for the simple model equation in which f(u) = au, a
positive constant, we get

vn+1j = vnj − λ(gnj+ 1
2

− gn
j− 1
2

), λ =
∆t

∆x
,

where the numerical flux is

gn
j+ 1
2

= a(vj +
1

2
δvj)

and

gn
j− 1
2

= a(vj−1 +
1

2
δvj−1).

The gradient δvj should be limited to obtain a conditionally stable scheme. Without TVD
constraint, we consider the linear average for the gradient, that is

δvj =
vj+1 − vj−1

2

and get the scheme

vn+1j = vnj −
aλ

4
(3vj + vj+1 − 5vj−1 + vj−2). (2.19)

Inserting Taylor expansions into the full discretized equation, the truncation error can be
easily found to be −a2λ∆xuxx/2 [56].

A necessary condition for stability of our numerical scheme is given by the Godunov-
Ryabenkii condition [27]:

Lemma 2.7. If equation (2.19), with periodic boundary conditions, has a solution

vj = e
stfj, ‖f‖ ≤ ∞

for some complex number s with <(s) > 0 and some stepsize ∆x0, then the appoximation
is not stable.

Proof. If such a solution exists, for some ∆x = ∆x0, s = s0, <(s) > 0, then

s̃0fj = −
a

4
(3fj + fj+1 − 5fj−1 + fj−2), s̃0 = ∆x0s0,

‖f‖ <∞.
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Therefore, for any ∆x,

ṽj = e
(s̃0/∆x)tfj

is also a solution. Thus, as ∆x goes to zero, we can construct solutions to the difference
equation that grow arbitrarily fast.

We can formulate this in terms of the eigenvalue problem

s̃φj = −
a

4
(3φj + φj+1 − 5φj−1 + φj−2), s̃ = ∆xs, (2.20)

‖φ‖ <∞.

We have the following theorem

Theorem 2.8. The approximation (2.19) is not stable because equation (2.20) has
eigenvalues s̃ with <(s̃) > 0.

Proof. Equation (2.20) is an ordinary difference equation with constant coefficients,
and its solution has the form

φj = σ1k
j
1 + σ2k

j
2 + σ3k

j
3

where k1, k2 and k3 are solutions of the characteristic equation

k3 + (
4s̃

a
+ 3)k2 − 5k + 1 = 0, s̃ = ∆xs (2.21)

Assuming that equation (2.21) has a solution k = e
√
−1ξ, ξ real, we get

s̃ =
a

4
[(4 cos ξ − 2 cos2 ξ − 2) +

√
−1(sin 2ξ − 6 sin ξ)].

Now, it is straightforward to see that <(s̃) vanishes only for cos ξ = 1. Thus, there exist
solutions s̃ with <(s̃) positive. Then, vj = estfj is a solution of (2.19) and, for Lemma 2.7
approximation (2.19) is unconditionally unstable.

In conclusion, the TVD constraint to the scheme makes it conditionally stable.
However also in this case, attention has to be posed when using the Euler explicit scheme
in time. Indeed, as reported in [56], one may note that the solution profile displays a stair-
like behavior when using a minmod or superbee limiter. To avoid this stair-like solution a
much smaller Courant number should be used, but in this way the attractiveness of this
method is lost. A better solution is to use high-order discretization not only in space but
also in time, as for example Runge-Kutta schemes.

2.5.3 Numerical tests

In this Section the previously analyzed methods (Godunov’s and van Leer’s schemes) are
applied to different model problems. The two sample tests used are the linear advection
equation, which serves as a model for contact discontinuities in fluid dynamics, and Burgers’
equation used to study how the methods treat shocks.
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Periodic boundary conditions. To apply any of the previous methods in a finite
domain, we are immediately faced with the problem of how to discretize the equations at
the boundary points. The simplest approach that avoids this problem consists in using
periodic boundary conditions (p.BCs),

u(xmin, t) = u(xmax, t),

so that periodicity is used to provide the extra needed values to implement Godunov and
van Leer’s schemes at the boundaries.

Example 1 p.BCs. We begin by studying the simple hyperbolic equation

ut + ux = 0 x ∈ [−1, 1] t ≥ 0
u(x, 0) = u0(x) = sin (2πx) x ∈ [−1, 1]

Its exact solution is the wave u(x, t) = sin (2π(x− t)), constant along the characteristics
x− t = constant, and with speed of propagation equal to dx/dt = 1. In this case the CFL
number is λ = ∆t/∆x , because |f ′(u)| = 1.

We calculate the solution at time t = 2 s with a CFL number equal to λ = 0.5,
with ∆t = 1 × 10−2 s and ∆x = 2 × 10−2 m. Figure 2.6 shows numerical solutions to
this problem by using Godunov’s and van Leer’s method: the results are plotted at time
t = 2 s along with the exact solution. Godunov’s solutions are smeared because being a first
order method it introduces large amount of numerical diffusion, while van Leer’s method
approximates the exact solution much better. The behavior of different limiters can be
observed in Figure 2.6 (b), (c) and (d). The minmod limiter reduces locally the accuracy of
the solution around the extrema, while the superbee limiter artificially sharpens the fronts.
The overcompressive property of superbee limiter is not too adequate for smooth profiles.
Instead, the van Leer limiter display an intermediate behavior between the minmod and
superbee limiters.

Example 2 p.BCs. To simulate contact discontinuities we again solve the linear advec-
tion equation ut + ux = 0, with initial condition u0(x) periodic of period 2 defined on the
interval [−1, 1] as

u0(x) =























1 −1 ≤ x ≤ −0.75
0 −0.75 < x < −0.25
1 −0.25 ≤ x ≤ 0.25
0 0.25 < x < 0.75
1 0.75 ≤ x ≤ 1

We solve this problem at time t = 2 s with λ = 0.5, by setting ∆t = 1 × 10−2 s and
∆x = 2× 10−2 m. The expected behavior of the considered numerical methods is plotted
in Figure 2.7. All the schemes are monotone but the first order Godunov scheme shows
again excessive numerical diffusion, while the second order schemes are more accurate with
the superbee limiter being the most compressive and the minmod limiter the most diffusive
one.
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Figure 2.6: Example 1 p.BCs: numerical (− · −) and exact (−) solution with λ = 0.5,
∆x = 2× 10−2 m, t = 2 s.
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Figure 2.7: Example 2 p.BCs: numerical (− · −) and exact (−) solution with λ = 0.5,
∆x = 2× 10−2 m, t = 2 s.
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Figure 2.8: Example 3 p.BCs: initial condition.
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Figure 2.9: Example 3 p.BCs: evolution in time by Godunov’s method.

Example 3 p.BCs. As nonlinear test problem with periodic initial and boundary condi-
tions, we consider the inviscid Burger’s equation (2.6) on the interval [0, 2π] and t ≥ 0, with
periodic boundary conditions u(0, t) = u(2π, t) and initial condition u0(x) = 5/2 + sin x.
As t increases from the origin, u0(x) is transported with unit speed to the right and simul-
taneously evolves into a function with an increasingly sharper profile which, after a while,
is discontinuous: a shock appears. Figure 2.8 displays the initial condition. The evolution
of the numerical solution obtained by Godunov’s method at times t = 0.2, 0.8, 1.2 and 2 s
is plotted in Figure 2.9, while Figure 2.10 shows the same solutions obtained by van Leer’s
method with van Leer’s limiter. We have chosen the van Leer limiter, because its behavior
is intermediate between the minmod and superbee limiters behavior. For both method we
have used ∆t = 2× 10−3 s and ∆x = 2π/100 m.
The smooth initial solution degenerates into a discontinuous one, but Godunov’s method
tends to smooth the profile while van Leer’s method is more efficient to control the shock.

Non periodic boundary conditions. Particular attention is needed to discretize
boundary conditions, since stable schemes can be strongly affected by unsuitable boundary
approximations, leading to possible instability or to reduction of unconditional to condi-
tional stability of the numerical scheme. With regard to accuracy, it is well known (see,
for example, [27]) that, for linear equations, the boundary scheme can be one order of
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Figure 2.10: Example 3 p.Bcs: evolution in time by van Leer’s method with van Leer
limiter.

accuracy lower than the basic discretization without reducing the global order of accuracy
of the complete method.
Consider the scalar conservation law

ut + (f(u))x = 0, x ∈ [xmin, xmax], t > 0
u(x, 0) = u0(x),

with prescribed boundary condition u(xmin, t) = g(t) if the characteristic is ingoing, that
is if f ′ > 0, or imposing u(xmax, t) = g(t) otherwise. For example, for the linear advection
equation ut + aux = 0, if a > 0, the characteristics are leaving from the boundary x =
xmin, thus coming into the domain. Therefore, we prescribe the solution at the boundary
x = xmin, u(xmin, t) = g(t), t > 0. Instead, if a < 0 we have u(xmax, t) = g(t), t > 0.
Therefore, when we consider the numerical scheme, at most one of the boundary values is
known by the boundary conditions.

Let the space interval [xmin, xmax] be divided into N − 1 cells of length ∆x, with
j = 1 at x = xmin to j = N at x = xmax, and consider a 3-point linear conservative scheme
(Godunov’s scheme) for approximating the linear advection equation with a > 0:

vn+1j = vnj − λ(gnj+ 1
2

− gn
j− 1
2

),

with gn
j+ 1
2

= g(vnj , v
n
j+1), and j varying from 2 to N − 1. Note that vn1 is given by the

boundary condition, i.e. vn1 = g(tn). We can not write the previous formula for j = N
because it requires values outside of the computational domain. In the same way, if we use
a 5-point scheme, (e.g. the van Leer scheme), again vn1 = g(tn), but the computation of
vn2 and v

n
N−1 requires the evaluation of auxiliary values v

n
0 , v

n
N and v

n
N+1. To this aim we

consider schemes based on extrapolations of the internal variables toward the boundary. In
particular, we consider the following formulae for a 3-point scheme (we write the conditions
for an outlet boundary j = N . The transposition to inlet conditions is straightforward,
replacing j = N by j = 1, j = N − 1 by j = 2 and so on):
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• space extrapolation

– zero-order extrapolation: vn+1N = vn+1N−1
– first-order extrapolation: vn+1N = 2vn+1N−1 − vn+1N−2

• space-time extrapolation

– zero-order: vn+1N = vnN−1

– first order in space/zero order in time: vn+1N = 2vnN−1 − vnN−2
– first order in space and time: vn+1N = 2vnN−1 − vn−1N−2

• time extrapolation

– zero order: vn+1N = vnN

– first order: vn+1N = 2vnN − vn−1N

In the case of a 5-point scheme, one proceeds on the same manner, for example

vn+1N = 2vn+1N−1 − vn+1N−2

and
vn+1N+1 = 2v

n+1
N − vn+1N−1.

In the following numerical experiments, we consider the space-time zero order extrapolation
in Godunov’s method, while, for van Leer’s scheme, we use first-order in space and time
formula to obtain vn+1N and vn+1N+1 for n ≥ 1. For n = 0 we consider the first order in space
and zero order in time formula, because only the initial values for t = t0 are known. For
the auxiliary value vn+10 we use a zero-order space extrapolation.

Example 1 non p.BCs. As a first example we consider the linear advection equation,
ut + ux = 0, with zero boundary conditions, and the following initial condition:

u(x, 0) = u0(x) =

{

sin(πx) 0 ≤ x ≤ 2
0 otherwise.

This test case allows us to test the diffusion properties of the schemes with numerical
boundary conditions. The solutions at time t = 2 s obtained by Godunov’s method and by
application of the various limiters to van Leer’s scheme can be seen from a comparison of
Figures 2.11 (a)→ (d). The behavior of the different scheme is similar to the one reported
previously. Note that no oscillations are introduced at the boundary, confirming the fact
that the overall scheme is stable.

Example 2 non p.BCs. A simple nonlinear test on Burgers’ equation is given by con-
sidering a Riemann problem, that is, the initial condition is:

u(x, 0) =

{

1 x < 0
0 x > 0.

Therefore, we have a shock propagating at speed s = 1/2 with unmodified intensity [u] = 1.
In Figure 2.12 we plot the numerical solution at time t = 4 s, with ∆t = 2× 10−2 m and
∆x = 4× 10−2 s.
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Figure 2.11: Example 1 non p.BCs: numerical (− · −) and exact (−) solution with
λ = 0.5, ∆x = 4× 10−2 m, t = 2 s.
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Figure 2.12: Example 2 non p.BCs: numerical (− · −) and exact (−) solution with
λ = 0.5, ∆x = 4× 10−2 m, t = 4 s.
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Figure 2.13: Example 3 non p.BCs: numerical ( − · −) and exact (−) solution with
λ = 0.5, ∆x = 4× 10−2 m, t = 4 s.

Example 3 non p.BCs. As last example we consider the Riemann problem whose
solution is a rarefaction wave:

u(x, 0) =

{

0 x < 0
1 x > 0

The behavior for the methods considered is displayed in Figure 2.13.

2.6 Two dimensional case

2.6.1 Spatial discretization

A straight forward extension of MUSCL type finite volume scheme to two spatial dimen-
sion can be obtained by employing rectangular discretizations. The advective flux can
then be split along the x and z directions and the one dimensional techniques previously
described can be applied. This approach inherits all the limitations of a structured regular
grid, and is affected by grid alignment problems. On the other hand, unstructured grids
(triangulations) offer a greater flexibility when dealing with complex geometries and limit
grid orientation effects. But extensions of TVD higher order schemes to two dimensional
triangulations require the definition of inherently two-dimensional limiters, and maintain-
ing second order accuracy is a challenge. The scheme we considered has been developed
by [16] and next modified by [34], is a second order accurate scheme of TVD type in the
sense that the fluxes are approximated to the second order accuracy, and is applicable to
an unstructured triangular grid. The scheme relies on a very local adaptive interpolation
idea, which results in computational efficiency. Before detailed presentation of this scheme,
a brief introduction to the Finite Volume (FV) methods for multidimensional conservation
laws is presented [25].

Hyperbolic conservation laws in multidimensions space can be written as

ut + ~∇ · ~F (u) = 0
u(x, 0) = u0(x),

(2.22)
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where x ∈ Rd. Here we consider hyperbolic conservation laws (2.22) in two space dimen-
sions (d =2). As in one spatial dimension, the FV method is based on the local conservation
property satisfied by the solutions of a conservations law, and thus can be defined control
volumes of general shape, in particular triangulations. The computational domain can be
subdivided into cells, or control volumes, Tl, with center xl. On Tl, u(·, t) is approximated
by a constant volume ul(t), considered as an approximation of the mean value of u over
the cell Tl,

ul(t) ∼=
1

|Tl|

∫

Tl

u(x, t) dx,

where |Tl| denotes the area of Tl. The differential equation defining ul(t) is obtained as
follows. First, integrating equation (2.22) over Tl yields

∂

∂t
(

∫

Tl

u(x, t) d∆) +

∫

∂Tl

~F (u(·, t)) · nl dΓ = 0, (2.23)

where ∂Tl is the boundary of Tl and nl the outward unit normal vector to Tl. The first
term in (2.23) is naturally approximated by

∂

∂t
(

∫

Tl

u(x, t) d∆) ∼= |Tl|
∂ul(t)

∂t
.

Since the approximation is not continuous across ∂Tl, we have to discretize the flux across

the boundary of the cell, that is

∫

∂Tl

~F (u(·, t)) · nl dΓ. This can be written as

∫

∂Tl

~F (u) · nl dΓ =
∑

e⊂∂Tl,e=elj

∫

elj

~F (u) · nl dΓ,

where the sum is taken over all the edges e of the cell, and ∂Tl = ∪elj, where elj = Tl ∩ Tj
is the face separating Tl and Tj . The problem is then to define the numerical fluxes

approximating

∫

elj

~F (u) · nl dΓ, using only the values ul(t). The usual way consists in

introducing a function H such that for e = elj ⊂ ∂Tl

∫

elj

~F (u) · nl dΓ ∼= |e|H(ul, uj , ne), (2.24)

where ne denotes the unit normal to e pointing in the direction of Tj (thus outward to Tl),
and |e| is the length of e. In this way we have assumed that the numerical flux depends only
on the values on each side of the edge and on the normal direction to the edge (obviously

it depends also on the continuous flux ~F ).
In the general case, the numerical flux H is assumed to be locally Lipschitz continuous and
must be both conservative and consistent.

Definition 2.9. Conservation property of the numerical flux H defined by equation
(2.24) can be written as

H(ul, uj , n) = −H(uj, ul,−n).
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This property is directly inherited from the continuous flux (2.24) and means that, in
the absence of a source term, the approximate flux at the boundary separating Tl and Tj
is the same as the flux at the boundary separating Tj and Tl (since −n is the unit normal
to e pointing in the direction of Tl).

Definition 2.10. Consistency property of the numerical flux H can be written as

H(u, u, n) = ~F (u) · n.

Again, this arises naturally from (2.24).
Once this numerical flux has been applied to the approximation of the flux across the
boundary of each cell, the following method of lines is obtained

|Tl|
∂ul(t)

∂t
+

∑

e⊂∂Tl,e=elj

|e|H(ul, uj , ne) = 0. (2.25)

This ordinary differential equation can be solved by means of the explicit Euler scheme:

|Tl|(uk+1l − ukl ) + ∆t
∑

e⊂∂Tl,e=elj

|e|H(ul, uj, ne) = 0,

where ukl
∼= ul(t

k) and where u0l is given.
There are several examples of FV methods. In particular there are the cell center

schemes and the cell vertex schemes. In the cell center scheme, one defines a control
cell as a triangle Tl, and the center of the cell is the centroid xl of the triangle Tl (see
Figure 2.14 a). Then the solution of (2.22) can be approximated, for example, by a function
that is piecewise constant on each triangle. In this way the values ul are associated to the
centroid xl since

ul ∼=
1

|Tl

∫

Tl

u(x) d∆ = u(xl, t) +O(∆x2),

where ∆x is the diameter of the triangulation [25].
In the cell vertex scheme, the quantities are defined at the vertices of the triangu-

lation. Thus, starting from a triangulation of the domain, one defines the centers as the
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vertices of the triangles (the nodes of the triangulation, al), and the control cell associated
to al is the dual cell of the node al. The polygonal boundary of the dual cell is obtained
by joining, for each triangle having the vertex al in common, the midpoint of each triangle
edge issued from al to the triangle barycenter. The boundary is thus composed of medians
and al is not necessarily the centroid of the control cell [25] (see Figure 2.14 b).

The most simple usual FV schemes are first order accurate, as it can be seen in [25],
where stability and convergence results are illustrated and a description of the most popular
schemes as Roe’s scheme is given.

Our attention is instead devoted to cell centered second order FV schemes. A
second order (in space) version of a FV scheme can be obtained via the MUSCL approach.
A piecewise linear reconstruction is used instead of piecewise constant function, together
with a limiting procedure.

In formula (2.25), the first order flux H(ul, uj , nlj), where ul and uj are the constant
values on each side of the edge elj, is now replaced by H(ulj, ujl, nlj), where ulj and ujl
are second order approximations of the solution on each side of the edge elj. These second
order approximations are computed through the following steps:

1. prediction of the gradients ~∇ul in each cell;

2. linear extrapolation to define the values ulj, ujl on each side of the edge;

3. limiting procedure to damp over or under shoots.

In this way we choose to work with the MUSCL-type cell-centered approach devel-
oped by [16] and then modified by [34].

2.6.2 Triangular Finite Volume scheme

The technique developed by [16, 34] can be described as follows.
Equation (2.25) can be written as

∂ul
∂t
= − 1|Tl|

3
∑

j=1

Hj(ulj, ujl, nlj)|ej|,

where elj , j = 1, 2, 3 are the edges of triangle Tl and ~nlj is the corresponding outward unit
normal. For simplicity, we write ul instead of ul(t). The approximation of the three line
integrals Hj, j = 1, 2, 3, in the above equation is obtained by a two step procedure. The
reconstruction step approximates the values of ul over each triangle. Second order accurate
reconstruction is achieved by linear interpolation in combination with a limiting procedure
that explicitly prevents the formation of overshoots and undershoots. The reconstructed
values are used in the second step to build a two-point Lipschitz conservative and consistent
monotone numerical flux approximating ~F (ul) · ~nlj .

The reconstruction step, following [34], proceeds as follows: for the triangle Tl
with centroid xl, three linear interpolants are built using the values of the nearby tri-
angles, say Tp, Tq, Tr of Figure 2.15. Denoting by xj the pair of coordinates of the
centroid of Tj , j = l, r, p, q, we construct L1l as the linear interpolant of the points
{(xl, ul), (xp, up), (xq, uq)}, while L2l is the linear interpolant of {(xl, ul), (xq, uq), (xr, ur)}
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Figure 2.15: Triangulation grid.

and L3l is the linear interpolant of {(xl, ul), (xr, ur), (xp, up)}. If an edge of Tl is on the
boundary, the value of u on the midpoint of that edge is used instead of the centroid value
in the linear interpolation.

Once the three interpolants are calculated, the magnitude of the gradient of Ljl can
be expressed as:

|∇Ljl | =
√

(
∂

∂x
Ljl )

2 + (
∂

∂y
Ljl )

2 j = 1, 2, 3.

Starting from the Ljl with maximum gradient and going toward the L
j
l with minimum

gradient, we choose the first j such that

Ljl (xlp) is between ul and up
Ljl (xlq) is between ul and uq
Ljl (xlr) is between ul and ur,

where xlp is the midpoint of the edge sharing Tl and Tp, and so on. If no L
j
l satisfies these

three requirements, we compute the local upper bound UBl and the local lower bound LBl

of triangle Tl. They are defined, respectively, as the maximum and the minimum of the
concentration values at the nearby points of the centroid of Tl.

Definition 2.11. We call xj a nearby point of xl, if it is the centroid of a triangle
that has at least a common point with the triangle Tl.
Therefore, starting again from Ljl with maximum gradient we choose the first j such that
Ljl satisfies

UBl ≥ max (Ljl (xlp), L
j
l (xlq), L

j
l (xlr))

LBl ≤ min (Ljl (xlp), L
j
l (xlq), L

j
l (xlr)).

If no interpolant satisfies these inequalities, we choose as interpolant a piecewise constant
reconstruction, that is Ll assumes a constant value equal to ul.

Once the linear interpolation Ll is obtained, the reconstructed values at the mid-
points of each edge of Tl from inside and outside the triangle, i.e. Ll(x

in
lj ) and Ll(x

out
lj ),

respectively, are the boundary conditions for the local Riemann problem. The line integral
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∫

elj

~F (ul) · ~nlj dΓ is approximated using the midpoint formula by Hj(Ll(x
in
lj ), Ll(x

out
lj ))|ej|,

where Hj is the Godunov flux, and |ej | is the length of elj. The second order accurate
semidiscrete approximation to (2.22) is then:

∂ul
∂t
= − 1|Tl|

3
∑

j=1

Hj(Ll(x
in
lj ), Ll(x

out
lj ))|ej | (2.26)

We remark that the expression second order accurate means that the scheme approximates
the flux to second order accuracy. At this point, the right-hand side of (2.26) can be
integrated in time with time step ∆t over the time interval [tk, tk+1]. In [16, 34] the
time integration is accomplished via a second-order TVD Runge-Kutta procedure (Heun
formula):

u1l = u
k
l −∆tE(x, uk),

uk+1l = 1
2
ukl +

1
2
(u1l −∆tE(x, u1)),

where E is the numerical flux defined as

E(x, u) =
1

|Tl|

3
∑

j=1

Hj(Ll(x
in
lj ), Ll(x

out
lj ))|ej|.

Another way of time integration is to consider the midpoint rule (Runge formula),

u1l = u
k
l − 1

2
∆tE(x, uk),

uk+1l = ukl −∆tE(x, u1).

It has been proved in [34] that the scheme with the above linear interpolation and
the second order TVD Runge-Kutta scheme satisfies the maximum principle under the
CFL condition:

CFL ≤ 1
3
,

where

CFL = ∆ta sup
Tl
|Tl|
sup |d

~F

dc
|,

Tl being the perimeter of Tl.

2.6.3 Numerical experiments

Now we present some numerical model problems to verify the numerical convergence rate
of the proposed scheme. We must take into account that both schemes, the one introduced
by [16] and the one developed by [34], do not reach global second order accuracy but only
display superlinear convergence. In [16] the observed order of convergence, in L1 norm,
varies from 1.55 to 1.85 - depending on the test experiments. In [34] the observed order of
accuracy is 1.6 in L1 norm. Therefore we do not expect that a different time integration
scheme can dramatically change the results. To this aim we compare the relative errors
computed in L1 and L2 norms (| e`,1 | and | e`,2 |) and the corresponding convergence rates,
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by applying as time integration schemes the classical first order Euler scheme (Eu), the
midpoint rule (Mp) and the Runge-Kutta scheme (RK).

For all the following tests we consider the solution at time tk = 0.1 s and tk = 1 s.
The domain of integration is the square [0, 1] × [0, 1] discretized using uniform triangular
elements. The coarsest mesh (` = 1) is characterized by 200 triangles and 121 edges, while
the finest level (` = 4) is characterized by 12800 triangles and 6561 edges.

We consider the simple linear conservation law

ut + ~∇ · (~vu) = 0.

Periodic boundary conditions are imposed in both the x− and the z− directions.

Example 1. First of all, we consider the case ~v = (1, 0), with initial condition

u0(x, z) = sin (2πx) sin (2πz).

For our simulations, the CFL number is set to 0.27. The time step size ranges from
∆t = 4 × 10−3 s (` = 1) to ∆t = 0.5 × 10−3 s (` = 4), and is halved at each level. As
we can observe from Table 2.1, at time tk = 0.1 s difference between the three temporal
schemes (Euler, midpoint or Runge-Kutta) is not relevant. If we consider least squares
approximation (l.s.a.), we obtain an order of accuracy of about 1.36 in the L1 norm and
1.24 in the L2 norm. These results are in agreement with those achieved by [16], since in
that paper least squares linear fits give 1.55 for the same test problem in L1 norm, but
with different CFL values.

The fact that the Euler scheme does not interfer with the overall accuracy can be
explained by considering that the final time of observation is very small, so that the spatial
order of accuracy is prevailing. In Table 2.2 we have put the errors and rate of convergence
for tk = 1 s. We can observe that the Euler scheme achieves an order of accuracy of 1.12 in
the L1 norm and 1.09 in the L2 norm. By least square approximation we obtain 1.14 and
1.13, respectively. This is in accordance with the fact that we are using a scheme that is
first order accurate in time. By using the second order in time schemes we do not observe
a decrease in accuracy. In fact we obtain almost 1.24 in the L1 norm and 1.20 in the L2
norm. In terms of least squares approximation a value of 1.32 is achieved in L1 norm, while
1.30 is reached in L2 norm for both second-order schemes.

Example 2. As a last example we consider a case showed in [34] with ~v = (−1, 0). As
initial condition we set

u0(x, z) = sin (2πx) sin (4πz/
√
3).

Again, CFL is set equal to 0.27, with the same ∆t as in the previous example (indeed
velocity does not change in absolute value). In Table 2.3 we compare the error values
obtained with Euler, midpoint and Runge-Kutta in the L1 and L2 norms at time t

k = 0.1 s.
The results are in agreement with those obtained in [34], where an order of convergence
of 1.6 is achieved for the same test case, even if on a different spatial grid (an equilateral
triangulation). In our example we observe a similar behavior of convergence in L1 norm,
where we obtain 1.60 with the Euler scheme and 1.66 with the midpoint and Runge-Kutta
schemes. In terms of least squares approximation we achieve 1.59 with Euler, and 1.61
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Table 2.1: Example 1: t = 0.1 s.

Eu Mp RK
` | e`,1 | rate | e`,1 | rate | e`,1 | rate
1 1.12e-1 1.15e-1 1.12e-1
2 4.09e-2 1.45 4.13e-2 1.48 4.01e-2 1.48
3 1.62e-2 1.34 1.63e-2 1.34 1.60e-2 1.32
4 6.57e-3 1.30 6.63e-3 1.30 6.59e-3 1.28

l.s.a. rate l.s.a. rate l.s.a. rate
1.36 1.37 1.36

` | e`,2 | rate | e`,2 | rate | e`,2 | rate
1 1.12e-1 1.13e-1 1.11e-1
2 4.42e-2 1.34 4.42e-2 1.35 4.28e-2 1.37
3 1.87e-2 1.24 1.91e-2 1.21 1.86e-2 1.20
4 8.18e-3 1.19 8.43e-3 1.18 8.38e-3 1.15

l.s.a. rate l.s.a. rate l.s.a. rate
1.26 1.24 1.24

Table 2.2: Example 1: t = 1 s.

Eu Mp RK
` | e`,1 | rate | e`,1 | rate | e`,1 | rate
1 2.24e-1 2.40e-1 2.40e-1
2 9.82e-2 1.19 8.69e-2 1.46 8.65e-2 1.47
3 4.51e-2 1.12 3.62e-2 1.26 3.57e-2 1.28
4 2.08e-2 1.12 1.53e-2 1.24 1.51e-2 1.24

l.s.a. rate l.s.a. rate l.s.a. rate
1.14 1.32 1.32

` | e`,2 | rate | e`,2 | rate | e`,2 | rate
1 2.27e-1 2.45e-1 2.46e-1
2 9.91e-2 1.19 8.79e-2 1.48 8.78e-2 1.49
3 4.59e-2 1.11 3.71e-2 1.24 3.66e-2 1.26
4 2.16e-2 1.09 1.62e-2 1.19 1.59e-2 1.20

l.s.a. rate l.s.a. rate l.s.a. rate
1.13 1.30 1.31
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Table 2.3: Example 2: t = 0.1 s.

Eu Mp RK
` | e`,1 | rate | e`,1 | rate | e`,1 | rate
1 1.30e-1 1.29e-1 1.28e-1
2 4.06e-2 1.68 4.06e-2 1.67 4.13e-2 1.63
3 1.43e-2 1.50 1.41e-2 1.52 1.38e-2 1.58
4 4.71e-3 1.60 4.47e-3 1.66 4.45e-3 1.63

l.s.a. rate l.s.a. rate l.s.a. rate
1.59 1.61 1.61

` | e`,2 | rate | e`,2 | rate | e`,2 | rate
1 1.28e-1 1.26e-1 1.25e-1
2 4.55e-2 1.49 4.50e-2 1.48 4.60e-2 1.44
3 1.72e-2 1.40 1.71e-2 1.39 1.66e-2 1.47
4 6.29e-3 1.45 6.09e-3 1.49 6.05e-3 1.46

l.s.a. rate l.s.a. rate l.s.a. rate
1.44 1.45 1.46

with the other schemes, in perfect accordance with [34]. In L2 norm we achieve about
1.50, while in least squares approximations we reach about 1.45 for the three schemes.

At time tk = 1 s (Table 2.4), like in the previous example, we achieve first order
of accuracy with the Euler scheme and about 1.30 for both norms and both second order
schemes.
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Table 2.4: Example 2: t = 1 s.

Eu Mp RK
` | e`,1 | rate | e`,1 | rate | e`,1 | rate
1 2.69e-1 2.66e-1 2.65e-1
2 1.58e-1 0.77 1.30e-1 1.03 1.31e-1 1.02
3 6.47e-2 1.29 4.84e-2 1.42 4.91e-2 1.41
4 2.97e-2 1.12 2.10e-2 1.20 2.07e-3 1.25

l.s.a. rate l.s.a. rate l.s.a. rate
1.08 1.24 1.24

` | e`,2 | rate | e`,2 | rate | e`,2 | rate
1 2.63e-1 2.58e-1 2.57e-1
2 1.59e-1 0.73 1.32e-1 0.97 1.33e-1 0.95
3 6.86e-2 1.21 5.23e-2 1.33 5.27e-2 1.33
4 3.21e-2 1.09 2.41e-2 1.12 2.38e-2 1.15

l.s.a. rate l.s.a. rate l.s.a. rate
1.03 1.16 1.16
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3 Mixed Hybrid Finite Element Method for the dis-

persion equation

In this Chapter we present the development of the Mixed Hybrid Finite Element (MHFE)
method on unstructured triangular meshes for the solution of dispersion equations. This
approach will be coupled to the FV scheme described in the previous Chapter to yield the
time-splitting technique that will be developed in Chapter 4. It will also be used in the
discretization of the flow equation of the coupled equations that govern brine transport
at the Lake Karachai. Therefore, we will use the same tool for the solution of the flow
equation and of the dispersive part of the transport equation.

3.1 Introduction to Mixed Finite Element methods

An exhaustive analysis of Mixed and Hybrid Finite Element methods is formulated in many
books and papers, like [6, 51, 47], as they have been widely developed since the seventies.
Here we simply give a brief general abstract setting for the mixed formulation and some
general existence and approximation results.

The starting-point of the classical Finite Element method is the solution of a physi-
cal problem that minimizes some functional (usually an energy functional) in a well chosen
space of admissible functions W (usually a Hilbert space),

inf
w∈W

J(w). (3.1)

If the functional J(·) is differentiable, the minimum (whenever it exists) will be character-
ized by a variational equation.

An approximate solution of (3.1) consists in looking for wm ∈ Wm, where Wm is a
finite-dimensional subspace of W , which is solution of the problem

inf
wm∈Wm

J(wm).

Therefore, the Finite Element (FE) method is a general technique to build finite-dimen-
sional subspaces of a Hilbert space W , based on a few simple ideas: first of all, the domain
Ω ⊂ Rd, d = 2, 3, in which the problem is posed, is partitioned into a set of simple
subdomains, called elements. These elements may be triangles, quadrilaterals, tetrahedra.
A space W of functions defined on Ω is then approximated by simple functions, defined
on each element with suitable matching conditions at interfaces. Simple functions are
commonly polynomials or functions obtained from polynomials by a change of variables.
In this way, we can state that a FE method can only be considered in relation with a
variational principle and a functional space. Changing the variational principle and the
space in which it is posed leads to a different FE approximation, even if the solution for
the continuous problem can remain the same.

Now, let us consider the Mixed Finite Element (MFE) method, starting from a
simple problem. Equation (1.1c) when only dispersion is considered and in the steady
state case can be written as:

−~∇ · (D~∇c) = f in Ω (3.2a)

c = 0 on ∂Ω (3.2b)
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where D = D(x) is the dispersion tensor, and c represents the concentration.

Introducing the dispersive flux ~G, we can write the Fick law,

~G = −D~∇c. (3.3)

Then, it could be desiderable to approximate ~G and c simultaneously using a different Finite
Element space for the two variables. With this purpose the problem (3.2) is decomposed
into a first order system as follows:

~G+D~∇c = 0 in Ω (3.4a)

~∇ · ~G = f in Ω (3.4b)

c = 0 on ∂Ω (3.4c)

Equation (3.4a) can be written as

D−1 ~G+ ~∇c = 0 in Ω.

Therefore, multiplying by test functions and integrating by parts we obtain the following
weak formulation of problem (3.4):

∫

Ω

D−1 ~G · ~w d∆−
∫

Ω

c~∇ · ~w d∆ = 0 ∀~w ∈ H(div,Ω)
∫

Ω

ψ~∇ · ~G d∆ =
∫

Ω

fψ d∆ ∀ψ ∈ L2(Ω)
(3.5)

where
H(div,Ω) = {~w ∈ L2(Ω)d : ~∇ · ~w ∈ L2(Ω)}

is the Hilbert space with the norm

‖~w‖H(div,Ω) = ‖~w‖L2 + ‖~∇ · ~w‖L2.

We observe that the weak formulation (3.5) involves the divergence of the solution and
test functions and not arbitrary first derivatives. This fact allows us to work with the
space H(div,Ω) formed by piecewise polynomial vector functions with continuous normal
component.

Problem (3.5) can be written in the space H(div,Ω) × L2(Ω) with the symmetric
bilinear form:

b((~G, c), (~w, ψ)) =

∫

Ω

D−1 ~G · ~w d∆−
∫

Ω

c~∇ · ~w d∆−
∫

Ω

ψ~∇ · ~G d∆

and the linear form

L((f, ψ)) = −
∫

Ω

fψ d∆.

Indeed, ( ~G, c) ∈ H(div,Ω)× L2(Ω) is the solution of (3.5) if and only if

b((~G, c), (~w, ψ)) = L((f, ψ)) ∀(~w, ψ) ∈ H(div,Ω)× L2(Ω).

48



In fact, taking (~w, 0) and (~0, ψ), we recover the two equations (3.5).

In order to define finite element approximations to the solution ( ~G, c) of (3.5), we
need to have finite element subspaces of H(div,Ω) and L2(Ω).
Let T = {Tl}ml=1 be a triangulation of Ω, i.e. Ω = ∪Tl∈TTl with diameter ≤ h. The
triangulation is admissibile if the intersection of two triangles is either empty, or a vertex,
or a complete side.
Thus, we have to construct piecewise polynomials spaces Wh and Ψh associated with Tl
such that Wh ⊂ H(div,Ω) and Ψh ⊂ L2(Ω).

The MFE approximation ( ~Gh, ch) ∈Wh ×Ψh is defined by
∫

Ω

D−1 ~Gh · ~w d∆−
∫

Ω

ch~∇ · ~w d∆ = 0 ∀~w ∈ Wh
∫

Ω

ψ~∇ · ~Gh d∆ =

∫

Ω

fψ d∆ ∀ψ ∈ Ψh.
(3.6)

In order to have stability and convergence Wh and Ψh can not be chosen arbitrarily but
they have to be related. First of all we assume that

~∇ ·Wh = Ψh. (3.7)

Next, let π2 ~G be the L
2- projection of ~G into Ψh, such that

∫

Ω

~∇ · (~G− π2 ~G)ψ d∆ = 0 ∀ ~G ∈ H1(Ω)d, ∀ψ ∈ Ψh (3.8)

where H1(Ω) is the well-known Sobolev space.
In the following, we recall the definition of the Sobolev space Hm(Ω).
Definition 3.1. Given m integer ≥ 0, the Sobolev space Hm(Ω) is defined as

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω),∀|α| ≤ m}

where Dαv represents a partial derivative taken in the sense of distributions,

Dαv =
∂|α|v

∂xα11 . . . ∂xαdd
, |α| = α1 + . . . αd.

On this space, the norm is given by

‖v‖Hm(Ω) =
∑

k≤m
|v|2k,Ω,

where

|v|2k,Ω =
∑

|α|=k
|Dαv|2L2(Ω).

The space L2(Ω) is then H0(Ω) while H(div,Ω) is a subset of H1(Ω).
In the following we state two theorems without proof, regarding the convergence of the
Mixed formulation. In particulat error estimates are specified for ~G and c, respectively.
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Theorem 3.2. If the spaces Wh and Ψh are such that properties (3.7) and (3.8)
hold, there exists a constant C > 0 depending only on the bounds of the coefficients of the
differential equation such that

‖~G− ~Gh‖H(div,Ω) ≤ C‖ ~G− π2 ~G‖H(div,Ω).

Theorem 3.3. If the spaces Wh and Ψh satisfy properties (3.7) and (3.8), and
π2 ~w satisfies the relation

‖π2 ~w‖L2 ≤ C‖~w‖H1(Ω) (3.9)

then there exists a constant C such that

‖c− ch‖L2(Ω) ≤ C{‖c− π̃2c‖L2(Ω) + ‖~G− π2 ~G‖H(div,Ω)} (3.10)

where π̃2c is the L
2-projection of c into Ψh.

3.2 Theorem of existence and uniqueness

In the previous Section we have stated some general results about error bounds assuming
that there exists a solution to our problem. In this Section we state two theorems about
existence and uniqueness of the solution of problem (3.5) and (3.6) respectively [51].

Theorem 3.4. The problem of finding a pair of functions ( ~G, c) ∈ H(div,Ω) ×
L2(Ω) such that (3.5) holds has a unique solution. In addition, c is the solution of the

elliptic problem (3.2) and ~G = −D~∇c.
Proof. For the sake of simplicity we prove the theorem for the case in which D is

the identity matrix. In this way equations (3.5) become:
∫

Ω

~G · ~w d∆−
∫

Ω

c~∇ · ~w d∆ = 0 ∀~w ∈ H(div,Ω) (3.11a)
∫

Ω

ψ~∇ · ~G d∆ =

∫

Ω

fψ d∆ ∀ψ ∈ L2(Ω) (3.11b)

Let us first check the uniqueness of the solution. Hence, assume that f = 0; from (3.11b)

we get ~∇ · ~G = 0. Taking ~w = ~G in (3.11a), we obtain ~G = 0. Therefore, we have
∫

Ω

c~∇ · ~w d∆ = 0 ∀~w ∈ H(div,Ω) (3.12)

Now, let ψ ∈ H1(Ω) be a function such that

~∇ · (~∇ψ) = c in Ω.

Then, by choosing ~w = ~∇ψ in (3.12), we get c = 0.
It remains to show that the pair ( ~G = −~∇c, c) is a solution of equations (3.11), where c is
the solution of problem (3.2) (with D = I).
On the one hand, we have

−~∇ · ~G+ f = ~∇ · ~∇c+ f = 0
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and equation (3.11b) is proved.
On the other hand, since c = 0 on ∂Ω, we get, by using the Green’s formula,

∫

Ω

(~G · ~w − c~∇ · ~w) d∆ = −
∫

∂Ω

c~w · ~n dΓ = 0

and equation (3.11a) is verified.
We recall the Green’s formula

∫

Ω

(~∇ψ · ~w + ψ~∇ · ~w) d∆ =
∫

∂Ω

ψ~w · ~n dΓ

where ~n represent the unit outward normal along the boundary ∂Ω.
By considering D 6= I the proof is slightly modified but in not relevant way. So the

proof is concluded.
When we consider the mixed formulation defined in two finite-dimensional spaces,

we have the problem of finding a pair of functions ( ~Gh, ch) ∈ Wh × Ψh such that equa-
tions (3.6) are verified.

About existence and uniqueness of the pair ( ~Gh, ch) we can state the following
theorem, whose proof is omitted.

Theorem 3.5. Assume that
{

~wh ∈ Wh
∫

Ω
ψh~∇ · ~wh d∆ = 0 ∀ψh ∈ Ψh, ⇒ ~∇ · ~wh = 0

and that there exists a constant D such that

sup
~wh∈Wh

(

∫

Ω
ψh~∇ · ~wh d∆
‖~wh‖H(div,Ω)

)

≥ D‖ψh‖L2(Ω).

Then the problem (3.6) has a unique solution ( ~Gh, ch) ∈Wh×Ψh and there exists a constant
C which depends only on D such that

‖~G− ~Gh‖H(div,Ω) + ‖c− ch‖L2(Ω) ≤ C( inf
~wh∈Wh

‖~G− ~wh‖H(div,Ω) + inf
ψh∈Ψh

‖c− ψh‖L2(Ω)).

3.3 The Lagrange multipliers

To apply the theoretical results about the mixed formulation, we need to define the spaces
Wh and Ψh that approximateW ⊂ H(div,Ω) and Ψ ⊂ L2(Ω) respectively. In the following,
we will use the Raviart-Thomas spaces defined on a generic element Tl ⊂ Ω as

RTk = (Pk)
d + xPk

where k is an integer ≥ 0 and Pk is the space of polynomials of degree ≤ k.
It can easily be seen that the dimension of RTk is given by [6]

dimRTk =

{

(k + 1)(k + 3) for d = 2
1
2
(k + 1)(k + 2)(k + 4) for d = 3.
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Lemma 3.6. For ~wh ∈ RTk the following relations hold:

~∇ · ~wh ∈ Pk
~wh · ~n|∂Tl ∈ Rk.

where Rk is the polynomial space defined on the edges ej of each element Tl:

Rk = {φ : φ ∈ L2(∂Tl), φ|ej ∈ Pk,∀ej}.

We consider the Raviart-Thomas space of degree zero, whereby the functions ~G and
c can be approximated by:

~G ' G̃ =
m
∑

l=1

gl ~wl

c ' c̃ =
m
∑

l=1

clψl

(3.13)

where ~wl and ψl are vector and scalar basis functions. Since we are considering the RT0
spaces, ~wl are first order polynomial of the type:

~wl =

(

ax+ b
az + c

)

,

while ψl are P0 polynomials equal to one on element Tl and zero elsewhere.
Using Lemma 3.6 one can easily see that the basis functions ~wl are defined on the

edge ej of Tl and can be chosen as to satisfy

∫

ej

~wl · ~nj d∆ = δlj

where δlj is the Kronecker function.
The Lagrange multipliers have been introduced to avoid the trouble of solving a

system of equations with an indefinite matrix. In fact, when we solve an elliptic problem
by a mixed finite element formulation we obtain a system of the form:

(

A BT

B 0

)(

g
c

)

=

(

0
f

)

(3.14)

and the matrix is indefinite, i.e. it has both positive and negative eigenvalues. Precondi-
tioned Conjugate Gradient methods can be used to solve the above system, but they may
perform poorly [4].

We note that when Dirichlet conditions are imposed on the boundary, i.e. c = bD
on ∂Ω, the vector (0, f)T becomes (b, f)T , since, by applying the Green’s formula we have

to consider the term −
∫

∂Ω

bD ~w · ~n dΓ.
To overcome the problem of solving an indefinite system, the hybrid formulation

relaxes the continuity of the normal velocity across interelement edges. In this way, matrices
A and B of (3.14) become both block diagonal and hence easily invertible. The continuity
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of normal velocity, which is essential in our discretization, is then back imposed through
the introduction of an extra variable, the so-called Lagrange multipliers.

The Lagrange multipliers are constant functions on each edge of Tl, when we use
the RT0 spaces. In this way, we add a new variable in our problem: instead of finding
a couple ( ~G, c), we find a triple ( ~G, c, λ). The function λ plays an important role as it
represents the value of the concentration head at the boundary of each element Tl.

We can summarize this new situation in the following theorem [6], by considering
the model problem (3.2) with Dirichlet and Neumann boundary conditions, that is

−D~∇c = f in Ω
c = bD on ΓD
∂c

∂n
= 0 on ΓN

(3.15)

Theorem 3.7. Let ( ~Gh, ch) be the solution of (3.6) with Dirichlet and Neumann
boundary conditions as in (3.15), and let λh be defined in the space of Lagrange multiplier

by λh =
∑m′

j=1 λljµj, where m
′ represents the number of internal edges of triangulation and

µj are piecewise constant basis functions.

Then, the triple ( ~Gh, ch, λh) is the unique solution of the following equations:
∫

Tl

D−1 ~Gh · ~w d∆−
∫

Tl

ch~∇ · ~w d∆+
∫

∂Tl

λh ~w · ~n dΓ =
∫

ΓD∩Tl
bD ~w · ~n dΓ (3.16a)

∀~w ∈Wh, ∀l = 1, . . . ,m
∫

Ω

ψ~∇ · ~Gh d∆ =

∫

Ω

fψ d∆ (3.16b)

∀ψ ∈ Ψh, ∀l = 1, . . . ,m
∑

Tj

∫

∂Tj

µl ~Gh · ~n dΓ = 0 (3.16c)

∀µl, ∀l = 1, . . . ,m

In the mixed formulation there is continuity of the normal components of ~G across the
interelement boundaries, that is, on ej = Tl ∩ Tk (Tl and Tk with diameters h1 and h2,
respectively), we can write

~Gh1 · ~nlj + ~Gh2 · ~nkj = 0 j = 1, . . . ,m′. (3.17)

Now, there is a jump in the normal flux and we loose this continuity. We can also say
that global mass conservation is not satisfied. Enforcement of mass conservation in the
hybrid formulation is achieved by adding the weak form of equation (3.17), represented by
equation (3.16c), that is

∫

ej

~Gh1 · ~nl dΓ +
∫

ej

~Gh2 · ~nk dΓ = 0 j = 1, . . . ,m′.

As consequence of the introduction of Lagrange multiplier, MHFE formulation gives rise
to a symmetric positive definite system matrix with good conditioning properties, as we
will see in Section 3.5.
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3.4 Superconvergence results

When we consider lowest order Raviart-Thomas spaces, the MFE formulation displays
global first order of accuracy for both ~G and c. In linear problems, under suitable conditions
on the mesh and on the regularity of the solution of the continuous problem, it has been
proved that this method achieves superconvergence for c in specific points of the mesh,
called superconvergence points, that is the centroids of the triangles [13].

On the other hand, for ~G no superconvergence results are known for general triangular
meshes. In [14] second order accuracy was observed at midpoint edges in a three-lines
mesh, that is in a mesh of similar triangles for which every edge is parallel to one of three
designated lines. In fact, for the elliptic problem

−~∇ · (D~∇c(x)) = f(x),

where D = D(x) is a positive definite matrix, setting ~G = −D~∇c and imposing boundary
conditions of the form ~G · ~n = bN , the following results for a three-lines mesh have been
proved in [14].

Lemma 3.8. On a three-lines mesh, the vector g computed by the mixed method is
super-close to the π2-projection of the true solution ~G in the sense that

‖g − π2 ~G‖L2 ≤ Ch2‖~G‖H2

for ~G ∈ (H2(Ω))2, being h the maximum diameter of the triangulation.
In this way, given a postprocessing scheme R :Wh → L2(Ω), the following theorem

can be stated.
Theorem 3.9. Let R :Wh → L2(Ω) be a linear operator satisfying

‖~G−R(π2 ~G)‖L2 ≤ Ch2‖D2 ~G‖L2 ∀~G ∈ (H2(Ω))2

and
‖R(~w)‖L2 ≤ C‖~w‖L2 ∀~w ∈Wh.

Then in any contest for which the vector g computed by the mixed method is super-close to
the π2-projection of the true solution ~G in the sense described in Lemma 3.8, we have that

‖R(g)− ~G‖L2 ≤ Ch2‖~G‖H2 .

Therefore a local postprocessing technique recovers second order accuracy of ~G on three-
lines meshes.

Remark. Do not confuse the partial derivative taken in the sense of distributions, D2 ~G,
written in the previous theorem, with the square of the matrix D.

3.5 The numerical solution of the dispersive flux

In this Section we consider the solution of parabolic equations tha we obtain adding a
temporal partial derivative of concentration in the first side of equation (3.2). This kind
of equation arises in different application fields, such as potential flow, groundwater flow,
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petroleum reservoir simulation. In particular, the numerical solution of groundwater flow
equation yields a system of pressure and velocity values. Often the pressure and velocity
fields are subsequently used for the solution of a companion contaminant transport problem,
leading to a coupled system of flow and transport equations. For this reason it is important
to well approximate pressure and velocity, to assure accuracy and, most importantly, to
conserve mass of the velocity fields. The MFE method provides an attractive framework
for these type of problems. By simultaneously approximating pressure and normal fluxes,
velocities calculated by MFE method automatically satisfy conservation of mass. Since
in elliptic equations, that is in steady-state flow problems, the indefinite mixed matrix
system becomes ill-conditioned, it is preferable to use the MHFE method, that gives rise
to a symmetric positive definite system matrix with good conditioning properties.

In [4] a two-dimensional MHFE model is developed for the solution of the nonlinear
equation of variably saturated flow in groundwater on unstructured meshes. In [35] a
MHFE scheme for linear dispersion equations on unstructured meshes is presented. Here
we develop the same MHFE method, and obtain an accurate and efficient implicit in time
scheme (nonlinearities are resolved by iteration, like in [4]), with no restriction on time
step. Moreover we define the Lagrange multipliers on all edges of the triangulation.

In Chapter 5 we will consider a coupled flow and transport problem for radioactive
contaminant and it will be very important to have accurate solutions for the pressure and
velocity fields. On the other hand, to solve the transport equation (see Chapter 4), we will
use a time-splitting technique, by solving two different PDEs separately, one containig the
advective flux and one containing the dispersive flux. Thus, for both the flow equation
and the dispersive part of the transport equation, we will use MHFE as described in the
following paragraph.

For simplicity, we continue to use the same notations of the previous Sections and
we consider the dispersion equation for the concentration:

∂φc

∂t
+ ~∇ · (−D~∇c) = f on Ω× (0, T ],

c = c0 on ∂Ω× 0,
c = bD on ΓD × (0, T ],
−D~∇c · ~n = bN on ΓN × (0, T ]

(3.18)

where φ is the porosity of the medium.

Denoting again by ~G the dispersive flux, ~G = −D~∇c, equation (3.18) may be written as:

∂φc

∂t
+ ~∇ · ~G = f on Ω× (0, T ] (3.19a)

~G = −D~∇c (3.19b)

We apply a lowest order Raviart-Thomas MHFE formulation to this problem working on
unstructured meshes. Thus Ω is discretized into m triangles, Tl, l = 1, . . . ,m.

In this way, concentration c can be approximated by

c ' c̃ =
m
∑

l=1

clψl, (3.20)
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while dispersive flux ~G can be defined on each triangle by

~Gl ' G̃l =

3
∑

j=1

ĝjl ~wjl l = 1, . . . ,m (3.21)

where ~wjl are the discontinous RT0 vector basis functions. We note that the basis functions
for the flux are defined as in the mixed case, but their local support is only one triangle.
This is due to the fact that we eliminate the continuity of the normal components of the
numerical flux ~G across the inter-element boundaries.

Multiplying equation (3.19a) by ψl and integrating in space and time, with time-step
∆t over the time interval [tk, tk+1], the following semidiscrete equations are obtained:

φk+1l ck+1l = φkl c
k
l −
∆t

|Tl|

∫

Tl

[~∇ · ~G(ck+θ)− fk+θ] d∆ l = 1, . . . ,m (3.22)

where ckl is the volume average over Tl defined by

ckl =

∫

Tl
c(·, tk) d∆
|Tl|

,

|Tl| is the area of Tl, φ is considered constant within each triangle, and a weighted scheme is
used for the time quadrature with weighting parameter θ ∈ {0.5, 1} and ck+θ = θc(·, tk+1)+
(1− θ)c(·, tk) = θck+1 + (1− θ)ck. Therefore, for θ = 1 we have the implicit Euler scheme,
while for θ = 0.5 we use the Crank-Nicolson integration.

Implementation of the MHFE produces the following system of linear equations:
∫

Tl

D−1l
~Gl · ~wil d∆−

∫

Tl

c~∇ · ~wil d∆+
∫

∂Tl

λ~wil · ~nl dΓ = 0 (3.23a)

φk+1l |Tl|ck+1l

∆t
+

∫

Tl

~∇ · ~Gl d∆ =
φkl |Tl|ckl
∆t

+

∫

Tl

fl d∆

(3.23b)
∫

ej

~Gl · ~nl dΓ +
∫

ej

~Gr · ~nr dΓ = 0 (3.23c)

if ej ∈ Tl ∩ Tr
∫

ej

~Gl · ~nl dΓ = bN (3.23d)

if ej ∈ ΓN ∩ Tl
λj = bD if ej ∈ ΓD (3.23e)

where i = 1, 2, 3, l = 1, . . . ,m, j = 1, . . . , n, n being the number of edges, while the
quantities with subscript l are defined over element Tl. The unknown Lagrange multiplier
λ is expressed as

λ =
n
∑

j=1

λjµj,

where λj represents the trace of the concentration on ej.
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In the above system, equation (3.23a) is the MHFE discretization of the dispersive
flux (3.19b); equation (3.23b) represents the discretized version of (3.19a); equation (3.23c)
guarantees continuity of the normal flux across interelement edges, while equations (3.23d-
3.23e) are the explicitly imposed Neumann and Dirichlet boundary conditions, respectively.
The final hybrid formulation can be written in matrix notation as:





A −B Q
BT P ′ 0
QT 0 0









gk+θ

ck+θ

λk+θ



 =





0

f + P̃ck

bN



 (3.24)

where A = diag[A1, . . . , Am], B = diag[B1, . . . , Bm] and

Al = (aik) =

∫

Tl

D−1l ~wil · ~wkl d∆ Bl = (bi) =

∫

Tl

~∇ · ~wil d∆

Q = (qrj) =

∫

∂Tl

µj ~wil · ~nl dΓ g = (gr) = gil

f = (f̂l) =

∫

Tl

fl d∆

where i, k = 1, 2, 3, j = 1, . . . , n, r = 3(l − 1) + i and c = (cl), λ = (λj), and bN =
(bNj) where bNj assumes a non vanishing value only if there is a Neumann condition on a

boundary edge ej. Setting P
k = diag[pk1, . . . , p

k
m] with p

k
l = φ

k
l |Tl|/∆t then P ′ =

P k+1

θ
and

P̃ = P ′ − P k+1 + P k. If pkl is not dependent on time, then P
′ = P̃ .

The system (3.24) is generally not definite and with a number of unknowns equal to
4m+ n, approximately 6 times the num a non vanishing value only if there is a Neumaner
of triangles of the discretized domain. Thus, the dimensionality of the problem is reduced
by appriopriately transforming the system by means of Schur complements. The solution
of the system proceed as follows. First of all, we obtain gk+θ from the upper system block:

gk+θ = A−1(Bck+θ −Qλk+θ). (3.25)

Note that matrix A is block-diagonal with 3× 3 blocks and is easily invertible. By substi-
tuting this expression into the remaining equations, we obtain a reduced system with ck+θ

and λk+θ as unknowns:

(

P ′ +BTA−1B −BTA−1Q
QTA−1B −QTA−1Q

)(

ck+θ

λk+θ

)

=

(

f + P̃ck

bN

)

. (3.26)

Since P ′ and BTA−1B are diagonal matrices, we can eliminate the unknown ck+θ

from the first equation. By setting H = P ′ +BTA−1B and S = A−1B, we obtain:

ck+θ = H−1(STQλk+θ + f + P̃ck). (3.27)

Again, matrix H is block-diagonal and easily invertible. By substituting equa-
tion (3.27) in the last equation of system (3.26), we obtain:

QTSH−1STQλk+θ −QTA−1Qλk+θ = −QTSH−1(f + P̃ck) + bN .
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Setting M = A−1 − SH−1ST , we have:

QTMQλk+θ = QTSH−1(f + P̃ck)− bN . (3.28)

The matrix QTMQ is symmetric and positive definite and we can solve the system to
obtain λk+θ.

To obtain λk+1, we define λkdiff = λ
k+1−λk. By the relationship λk+θ = θλkdiff+λk,

we have:

QTMQλkdiff =
1

θ
QTSH−1(f + P̃ck) +

1

θ
bN −

1

θ
QTMQλk.

Once λk+1 is calculated ck+1 can be evaluated using equation (3.27). If P̃ = P ′ we get:

ck+1 = (I − H−1BTS

θ
)ck +

H−1

θ
(f + STQλk+θ),

otherwise

ck+1 = (I − H−1(BTS + P k+1 − P k)

θ
)ck +

H−1

θ
(f + STQλk+θ).

It is now straightforward to obtain g from (3.25).

3.6 Numerical experiments

In this Section we report the numerical results and convergence rate obtained in the simu-
lation of one and two-dimensional problems for c. The relative error (| e` |) is computed at
the centroids of the triangles, by using the L2 norm. The rate of convergence is computed
level after level and globally, by least squares approximation (l.s.a.).

The one-dimensional model problems are solved in a two-dimensional grid system.
To this aim, five grid levels are used and defined as follows. At the coarsest level (` = 1) the
rectangular domain is discretized into three layers of rectangular elements that are further
subdivided into two triangles. The refined triangulations (` = 2, . . . , 5) are obtained by
connecting the midpoints of the three edges of each triangle. To reduce the dimensionality
of the mesh, the height of the domain is always halved in passing from a coarser to the
next finer level, in such a way that the shape of the triangles at the different levels is
preserved. The coarsest mesh is defined on the rectangle [0, 1]× [0, 0.1] and is characterized
by 300 triangles and 204 edges, while the finest level (` = 5) is defined on the rectangle
[0, 1]× [0, 6.25× 10−3] and is characterized by 4800 triangles and 3204 edges.

In the first two examples, ∆t starts from 2×10−3 s (` = 1) and goes until 1.25×104 s
(` = 5): at each next grid level we reduce the time step by half.

Example 1. In this example, we consider the simple problem whose analytical solution
is given by:

c(x, t) = erfc
x

2
√
Dt

(3.29)

where the dispersion coefficient D is chosen so that c(0, t) = 1 and c(1, t) = 0. Convergence
results for D = 2 × 10−2 m2/s are reported in Table 3.1. Like predicted from the theory,
we observe first order of convergence when using Euler scheme in time, and second order
when using Crank-Nicolson.
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Table 3.1: Example 1: t = 1 s.

Eu CN
` | e` | rate | e` | rate
1 1.13e-3 7.61e-4
2 3.76e-4 1.59 1.90e-4 2.00
3 1.40e-4 1.42 4.74e-5 2.00
4 5.84e-5 1.26 1.19e-5 1.99
5 2.62e-5 1.16 2.98e-6 2.00

l.s.a. rate l.s.a. rate
1.35 2.00

Table 3.2: Example 2: t = 1 s.

Eu CN
` | e` | rate | e` | rate
1 1.05e-1 3.85e-3
2 5.06e-2 1.05 9.61e-4 2.00
3 2.48e-2 1.03 2.40e-4 2.00
4 1.23e-2 1.01 6.00e-5 2.00
5 6.12e-3 1.01 1.50e-5 2.00

l.s.a. rate l.s.a. rate
1.02 2.00

Example 2. Again, in this example we prove first and second order convergence rate
when time integration is given by Euler and Crank-Nicolson schemes, respectively. We
consider the following one-dimensional linear problem:

ct − cxx = 0, x ∈ [0, 1], t ∈ [0, 1],
c(0, t) = 0, c(1, t) = 0
c(x, 0) = 2 sin (πx)

whose exact solution is:
c(x, t) = 2eπ

2t sin (πx).

In Table 3.2 we report the relative errors and convergence rates of the numerical solution.
The results are in good agreement with the theory.

Example 3. As last one-dimensional test case, we consider a steady-state problem, that
is the solution is not dependent on time. Indeed, we consider the problem associated to
the exact solution:

c(x, t) = sin (πx).

Thus we can verify superconvergence at the centroid of the triangles, since error does not
depend on time. In fact, we obtain the same results when we use Euler or Crank-Nicolson
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Table 3.3: Example 3: t = 1 s.

` | e` | rate
1 2.93e-3
2 7.31e-5 2.00
3 1.83e-5 2.00
4 4.57e-6 2.00

l.s.a. rate
2.02

Table 3.4: Example 4: t = 10 s.

Eu CN
` | e` | rate | e` | rate
1 7.44e-2 2.00e-3
2 3.72e-2 1.00 5.20e-4 1.95
3 1.86e-2 1.00 1.33e-4 1.97
4 9.32e-3 1.00 3.37e-5 1.98

l.s.a. rate l.s.a. rate
1.00 1.96

scheme in time. The values reported in Table 3.3 are obtained at time t = 1 s starting from
∆t = 4×10−2 s (` = 1) and halving the time step at each next grid level. Superconvergence
is achieved in good agreement with the theory.

Example 4. To test the Mixed Hybrid approach in a two-dimensional problem, we
consider the problem whose exact solution is given by

c(~x, t) = sin [t(
x3

3
+
z3

3
− x2

2
− z2

2
)]

and calculate the source term f a posteriori from the governing equation. The domain is
the unit square [0, 1]× [0, 1], discretized via right triangular elements. The coarsest mesh
(` = 1) is characterized by 200 triangles and 121 edges, while the finest level (` = 4) is
characterized by 12800 triangles and 6561 edges. The timestep is ∆t = .5 s at ` = 1 and,
halving it at each next spatial grid, ∆t = 6.25× 10−2 s at ` = 4. The errors are computed
at the final time t = 10 s and reported in Table 3.4 together with convergence rates. As in
the previous examples we note good agreement with the theory.
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Part II

New results
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4 A time-splitting technique for the advection-disper-

sion equation

In this Chapter we turn on attention to the solution of the advection-dispersion equation,
with special reference to the equation describing solute transport in groundwater. The
numerical tools described in the previous Chapters will be combined to form an accurate
and efficient algorithm for the solution of this equation.

The main idea that is behind this approach consists in employing a time-splitting
technique to allow the use of different spatial discretization schemes, namely MHFE and
FV, applied to the dispersive and advective fluxes, respectively. In the following a first
order in time technique is presented and studied in details. Next, we propose an extension
to second order accuracy in time and space.

4.1 Introduction to the time-splitting technique

The advection-dispersion equation is difficult to approximate when advection dominates
because sharp concentration fronts tend to develop and move without changing form. It is
well known that standard finite difference and finite element methods may not work well
for problems with sharp fronts, showing non-physical oscillations and numerical diffusion.
To overcome these phenomena, numerical schemes try to combine numerical stability with
minimal artificial diffusion. Two approaches are generally used in these situations. One is
based on the definition of a proper control volume where upwind techniques can be used
for approximating the advective flux. In this case the stability of the scheme is obtained
by adding an amount of numerical diffusion that is dependent on the approach used [42].
The other class of methods originates from the splitting of the dispersion and advection
fluxes into two separate partial differential equations (PDEs) containing one the dispersive
and the other the advective term, respectively. These two equations are then discretized,
each with the technique deemed most appropriate. Splitting allows the combination of
explicit time-stepping for advective fluxes with implicit time-stepping for dispersive fluxes.
This approach lessens the stability constraint connected with explicit discretization of
the dispersion term but maintains the possibility of using efficient explicit schemes for
advection. Belonging to this class are the Eulerian-Lagrangian schemes [39, 7] or the fully
Eulerian Godunov-Mixed Methods (GMM) [9, 10, 11, 12]. In this latter approach, a time-
explicit, spatially second-order accurate Godunov method is used to treat advection, and
a time-implicit, spatially second order accurate Mixed Finite Element method is used for
modeling dispersion.

Similar in spirit to the GMM approach, using Euler time-stepping, the advec-
tive term is discretized by a triangle-based, high resolution Finite Volume (FV) scheme
[46, 16, 34], while the dispersive flux is discretized using a Mixed Hybrid Finite Element
(MHFE) technique. The choice of these two schemes is dictated, on one hand by their
accuracy, robustness and efficiency in handling nonuniform meshes and highly variable co-
efficients. On the other hand, both FV and MHFE are based on the weak formulation of
the governing equation and use similar functional spaces for the approximation of the de-
pendent variable, making them ideally suited for combination in a time-splitting approach.
The main difference between the GMM approach and the proposed one lies in the unstruc-
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tured character of the spatial discretizations of the latter. This implies, in contrast with the
original GMM approach, the use of triangular meshes together with fully multidimensional
slope limiters in the FV phase. More precisely, the time-splitting scheme employs explicit
and implicit Euler time-stepping for FV and MHFE, respectively, while piecewise constant
basis functions are used by both techniques to approximate concentration. Second order
accuracy in space is obtained by MHFE at special superconvergence points (the centroids
of the triangles) [13]. The FV approach achieves spatial second order accuracy (away from
sharp fronts) by employing linear reconstruction plus slope limiting, combined in such a
way as to locally satisfy the maximum principle [34]. The resulting numerical scheme is
first order accurate in time and second order accurate in space. As we will see, to obtain
second order accuracy also in time, it is not sufficient to consider a scheme of second order
accuracy in time, but it is necessary to add a correction term in the advection equation.

Both MHFE and FV are locally (at the element level) conservative and monotone.
The combination of the two methods in the time splitting approach should maintain these
two properties as long as stability requirements are met, as confirmed also by numerical
results. In principle there are no difficulties in extending our technique to three dimensions.
This is done by merely employing three dimensional versions of MHFE and FV. Proper
implementation of FV requires the development of tetrahedra based slope limiters, a field
that is still subject of active research.

4.2 The numerical scheme

Subsurface contaminant transport is governed by an advection-dispersion equation of the
form

∂φc

∂t
+ ~∇ · (~vc−D~∇c) = f on Ω× (0, T ],

c = c0 on Ω× 0,
c = bD on ΓD × (0, T ],
−D~∇c · ~n = bN on ΓN × (0, T ]
(~vc−D~∇c) · ~n = bC on ΓC × (0, T ]

(4.1)

where c is the concentration of the solute, φ(t) is the porosity of the medium, ~v(~x, t)
is Darcy’s velocity, D = D(~v) is the tensor accounting for mechanical dispersion and
molecular diffusion, and f is a source or sink term (Ω ∈ R2 and Γ = ∂Ω).

Denoting by ~F and ~G the advective and dispersive fluxes, respectively, equation (4.1)
may be written as:

∂φc

∂t
+ ~∇ · (~F + ~G) = f on Ω× (0, T ] (4.2a)

~F = ~vc (4.2b)

~G = −D~∇c (4.2c)

As the geometry of the physical domain Ω is often complex when dealing with real world
applications, we choose to work with unstructured meshes, and thus Ω is discretized into
m triangles, Tl, l = 1, . . . ,m. Concentration c can be approximated as in (3.20) by:

c ' c̃ =
m
∑

l=1

clψl,
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where ψl are P0(Tl) scalar basis functions defined in Chapter 3.
Multiplying equation (4.2a) by ψl and integrating in space and time, with time-step

∆t over the time interval [tk, tk+1], the following semidiscrete equations are obtained:

φk+1l ck+1l = φkl c
k
l −
∆t

|Tl|

∫

Tl

[~∇ · (~F (ck+1−θ) + ~G(ck+θ))− fk+θ] d∆ l = 1, . . . ,m

where ckl is the volume average over Tl defined by

ckl =

∫

Tl
c(·, tk) d∆
|Tl|

,

|Tl| is the area of Tl, φ is considered constant within each triangle, and a weighted scheme
is used for the time quadrature with weighting parameter θ ∈ [0.5, 1] and ck+θ = θck+1 +
(1− θ)ck.

Denoting by Ld the spatial discretization operator for dispersion, where we also
include the source term f , and by La the spatial discretization operator for advection, the
fully discretized equations become:

φk+1l ck+1l = φkl c
k
l +∆t

[

Ld(c
k+θ) + La(c

k+1−θ)
]

l = 1, . . . ,m (4.3)

where, for θ = 1 we have the implicit Euler scheme for Ld and explicit Euler scheme for
La. For θ = 0.5 the above equation reduces to the midpoint rule for both Ld and La. In
the first part of this Chapter we consider only Euler schemes, i. e. θ = 1.

The numerical fluxes La and Ld are evaluated by means of the discretization meth-
ods that are deemed more appropriate to solve, respectively, the advection and diffusion
equations. For advection, we consider a high resolution triangular Finite Volume (FV)
discretization by following the scheme studied in Chapter 2. This method requires explicit
time-stepping and thus stability is guaranteed by a CFL restriction on ∆t. Possible non-
linearities can also be resolved without iteration. This can be seen as a disadvantage of the
time-splitting method with respect to fully implicit schemes, which are not impaired by
stability constraints. However, in many problems of practical importance, CFL numbers
less than unity are required to maintain accuracy. Thus stability constraints are automati-
cally satisfied and do not pose limitations. The dispersive flux is discretized by an implicit
MHFE method. This approach has been chosen because of its intrinsic compatibility with
the FV method. Since it is implicit in time, there is no stability restriction on the time-step
connected with MHFE.

4.2.1 The time-splitting technique

The time-splitting technique can be viewed as a predictor-corrector approach and can be
described by the following algorithm:

Algorithm 4.1.
For each time step do:

• advection step: for each Tl solve na times with the explicit FV scheme, with ∆ta as
the time step, determining the predictor concentration ĉk+1l
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1. φ
(0)
l := φ

k
l c

(0)
l := c

k
l

2. do ia = 0, na − 1

φ(ia+1)c
(ia+1)
l = φ(ia)c

(ia)
l +∆ta

[

La(c
(ia)
l )

]

(4.4)

end do

3. ĉk+1l := c
(na)
l

• dispersion step: for each Tl solve with implicit MHFE method using ĉk+1l as initial
condition

φk+1ck+1l = φk ĉk+1l +∆td
[

Ld(c
k+1
l )

]

(4.5)

with ∆td = na∆ta, obtaining the final approximation c
k+1
l .

Because the stability of the advection step is determined by the CFL constraint,
while the dispersive time step is not subject to stability restrictions, we use two different
time steps for advection and diffusion, ∆ta and ∆td respectively. Therefore a finer advection
time step together with a coarser diffusive time step can be employed. The convergence
rate of the scheme is influenced by the convergence rates of the two spatial discretization
methods employed. Namely, first order accuracy in time and second order accuracy in
space is expected at the centroids of the triangles, as both FV and MHFE are spatially
second order accurate. Accuracy is also influenced by the different time step sizes that can
be used in the advection and dispersion discretizations. A heuristic analysis trying to find
the optimal na in different situations will be reported in a later Section.

Finite Volume discretization. In the advection step, equation (4.4) can be explicitly
written as:

φk+1l ck+1l = φkl c
k
l −
∆t

|Tl|

∫

Tl

~∇ · (~F (ckl ) d∆ l = 1, . . . ,m (4.6)

and is solved using as initial condition the solution calculated at the end of the previous
time step.

The spatially second order accurate discrete approximation to (4.6) is then:

φk+1l ck+1l = φkl c
k
l −
∆t

|Tl|

3
∑

j=1

Hj(Ll(x
in
lj ), Ll(x

out
lj ))|ej | (4.7)

where the terms are described in Section 2.6.2.
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MHFE discretization. In the dispersion step, our implementation of the MHFE applied
to the discretization of (4.5) produces the following system of linear equations:

∫

Tl

D−1l
~Gl · ~wil d∆−

∫

Tl

c~∇ · ~wil d∆ +
∫

∂Tl

λ~wil · ~nl dΓ = 0 (4.8a)

φk+1l |Tl|ck+1l

∆td
+

∫

Tl

~∇ · ~Gl d∆ =
φkl |Tl|ckl
∆td

+

∫

Tl

fl d∆ (4.8b)

∫

ej

~Gl · ~nl dΓ +
∫

ej

~Gr · ~nr dΓ = 0 if ej ∈ Tl ∩ Tr (4.8c)

∫

ej

~Gl · ~nl dΓ = bN if ej ∈ ΓN ∩ Tl (4.8d)

λj = bD if ej ∈ ΓD (4.8e)

where i = 1, 2, 3, l = 1, . . . ,m, j = 1, . . . , n, n being the number of edges. The quantities
with subscript l are defined over element Tl, while |Tl| denotes the area of Tl. The dispersive
flux ~G is approximated for each Tl by

~Gl =
3
∑

j=1

gjl ~wjl l = 1, . . . ,m

where ~wjl ∈Wl are the discontinuous RT0 vector basis functions described in the previous
Chapter.

In the above system, equation (4.8a) is the MHFE discretization of the dispersive
flux (4.2c); equation (4.8b) represents the discretized version of (4.2a) without advective
terms, as required by the time-splitting approach; equation (4.8c) guarantees continuity of
the normal flux across inter-element edges, while equations (4.8d-4.8e) are the explicitly
imposed Neumann and Dirichlet boundary conditions, respectively.

Again the developments that lead to the final system of equations are reported in
Section 3.5.

4.2.2 Boundary conditions

The intrinsic nature of the time-splitting approach requires careful implementation of
boundary conditions. In this respect, however, we are facilitated by the fact that in
groundwater contaminant transport problems only a limited variety of boundary condi-
tions is physically admissible (e.g. in general no boundary layers occur). To better describe
how the boundary conditions are implemented in the proposed approach we distinguish
between inflow and outflow boundaries. Inflow boundaries are characterized by having flow
velocity normal components ~v ·~n directed inside the domain. Dirichlet or Cauchy boundary
conditions may be of use in this situation. In the special case of ~v · ~n = 0, Neumann type
boundary conditions can also be employed. Implementation of these types of boundary
conditions in the time splitting algorithm is obtained by specifying Dirichlet-type boundary
conditions in the advective step and Neumann-type boundary conditions in the dispersive
step. For example, inflow from a distributed source of contaminant can be specified as:

~vc · ~n = ~vc1 · ~n⇒ i.e. Dirichlet b. c. c = c1 for the advection step

−D~∇c · ~n = 0⇒ i.e. zero Neumann flux for the dispersion step
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Outflow boundaries are characterized by outgoing velocities, and are easily implemented
by imposing in the dispersion equation zero Neumann fluxes, as the outgoing advective
flux is governed only by the velocity field.

Other type of conditions that may occur concern the presence of internal injection
or extraction wells. Also in this case inflow or outflow are governed by the flow field and
possible boundary conditions are easily implemented by Dirichlet plus zero Neumann and
by zero Neumann conditions for injection and extraction wells, respectively.

4.2.3 Numerical results

Numerical tests on a one dimensional sample problem (movement of a tracer in a semi
infinite column) are used to validate the theoretical results. A heuristic analysis on the
relative role of the two discretization schemes in the convergence behavior of the proposed
approach is aimed at determining the best time-stepping strategy for the explicit and the
implicit schemes. At each implicit step, a number of explicit time steps can be performed,
according to accuracy and stability requirements. In this way the proposed approach can
be viewed also as a sub-stepping technique for the solution of the advective phase. In
addition, we present a realistic test case - the Gureghian test - and compare the numerical
results obtained by the proposed scheme with those available in the literature [23]. These
test cases show that the proposed approach does not suffer from Peclet limitations and
always displays small amounts of numerical diffusion, maintaining high order of accuracy
across the entire spectrum of Peclet numbers and high computational efficiency.

We recall that the behavior of the proposed numerical scheme can be characterized
as a function of two grid related dimensionless numbers, the Courant-Friedrichs-Lewy
(CFL) number and the Peclet (Pe) number. The CFL number can be defined for each
triangle Tl as [34]

CFL = ∆ta sup
Tl
|Tl|
sup |d

~F

dc
| (4.9)

where Tl and |Tl| denote the perimeter and the area of Tl, respectively. Stability of the
FV scheme requires that CFL ≤ 1

3
. The Peclet number represents the ratio between the

advective and the dispersive term and can be defined in our case as [46]

Pe =
CFL

γ
(4.10)

where the dispersion number γ is given by:

γ = |D|∆ta sup
1

|Tl|
(4.11)

and |D| is the norm of tensor D. Low Peclet numbers indicate that dispersion is predomi-
nant over advection, and vice versa.

One dimensional tests. The numerical convergence rate of the time-splitting technique
is tested on a one dimensional model problem solved in a two dimensional grid system. We
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consider the partial differential equation describing the movement of a tracer in a semi-
infinite column and simulate it on a rectangular domain of unit length, with ~v = (v, 0)
and D = diag(D1, D1). The boundary conditions c = 1 at x = 0 and c = 0, for x = ∞
are imposed. Zero concentration is used as initial condition. This situation is simulated
numerically by employing a grid of unitary length and making sure that at the time at
which the relative error is evaluated the solution vanishes naturally at the right boundary.
The analytical solution to this problem is [1]:

c(x, t) =
1

2
(erfc

x− vt
2
√
D1t
+ exp

vx

D1
· erfc x+ vt

2
√
D1t
). (4.12)

The numerical convergence behavior of the scheme is evaluated by calculating errors at
different grid levels. For a given level `, we calculate the error |e`| in L2 norm.

For all the subsequent test runs we consider the solution at tk = 0.1 s.
Five grid levels are used and defined as follows. At the coarsest level (` = 1) the

rectangular domain is discretized into three layers of rectangular elements that are further
subdivided into two triangles. The refined triangulations (` = 2, . . . , 5) are obtained by
connecting the midpoints of the three edges of each triangle. To reduce the dimensionality
of the mesh, the height of the domain is always halved in passing from a coarser to the
next finer level, in such a way that the shape of the triangles at the different levels is
preserved. The coarsest mesh is defined on the rectangle [0, 1]× [0, 0.1] and is characterized
by 300 triangles and 204 edges, while the finest level (` = 5) is defined on the rectangle
[0, 1]× [0, 6.25× 10−3] and is characterized by 4800 triangles and 3204 edges. In the case
of constant coefficients, Pe decreases by a factor of 2 in passing from a coarser to a finer
level.

The first set of simulations is aimed at numerically verifying the theoretical conver-
gence rate of the time-splitting scheme under different Pe and CFL numbers. Second order
convergence rate can be observed on a problem with smooth solution (small Pe number)
employing ∆td = ∆ta = h2 (h being the diameter of the triangulation). Table 4.1 reports
the errors and convergence rates at the different levels for a case with D1 = D2 = 1×10−2
m2/s and v = 1 m/s. Correspondingly the grid Peclet number varies between 9.22 (` = 1)
to 0.58 (` = 5), while CFL goes to zero. First order convergence rate is instead achieved
when ∆t = O(h). Table 4.2 reports the results to the same problem obtained with constant
CFL numbers (0.28 and 0.14, respectively) using a constant ∆td = ∆ta. Convergence is
still superlinear but seems to tend asymptotically to first order, as predicted by the theory.
The second set of simulations is aimed at determining the best time stepping strategy, i.e.
the number na of advective time steps per dispersive time step, for which the error remains
reasonably small and CPU time is minimal. It is intuitive to think that the behavior of
the time-splitting approach depends on the given Peclet number. For small Pe, i.e. dom-
inant dispersion, one expects convergence to be mainly driven by the MHFE technique
discretizing the dispersion terms. The transient behavior of the solution should be well
captured even for na = 1, i.e. ∆ta = ∆td. On the other hand, for large Pe, the advective
terms become important and thus the advective transient has to be accurately captured.
We expect for this case the best accuracy when ∆ta < ∆td, or na > 1. Verification of this
behavior is obtained for a given Peclet number by comparing errors | e` |, computed in L2
norm, and CPU times for different values of na on a fixed mesh level. For this purpose we
choose the mesh with 1200 triangles (` = 3). The dispersion coefficient varies in the range
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Table 4.1: One dimensional example: convergence behavior for ∆td = ∆ta = h
2.

` Pe | e` | rate
1 9.22 1.24e-2
2 4.61 3.67e-3 1.76
3 2.31 8.01e-4 1.98
4 1.15 2.07e-4 1.97
5 0.58 7.13e-5 1.86

Table 4.2: One dimensional example: convergence behavior for ∆td = ∆ta; CFL=0.28
(left) and CFL= 0.14 (right).

` Pe | e` | rate
1 9.22 1.47e-2
2 4.61 5.40e-3 1.44
3 2.31 1.84e-3 1.50
4 1.15 7.67e-4 1.42
5 0.58 3.54e-4 1.34

` Pe | e` | rate
1 9.22 1.27e-2
2 4.61 4.25e-3 1.58
3 2.31 1.14e-3 1.74
4 1.15 4.02e-4 1.66
5 0.58 1.65e-4 1.57

D = 2 × 10−2 ÷ 0.5 × 10−4 m2/s, while velocity is kept constant at v = 0.5 m/s. These
values correspond to Peclet numbers varying from 0.28, a dispersion dominated problem,
to 115, a convection dominated case. The results of the different simulations are reported
in Tables 4.3 to 4.6. Each column of the tables contains the results (| e3 |, and CPU times
in second) for a fixed ∆t value and for the different na values tested. Subsequent columns
(rows) are characterized by double ∆td (na) values. The CFL number as well as ∆ta are
thus constant along the main diagonals of the tables. For example, in Table 4.3 the advec-
tive time step is the same (∆ta = 0.25 × 10−1 s) for the three cases ∆td = 0.25 × 10−3 s
and na = 1, ∆td = 0.5× 10−3 s and na = 2, and ∆td = 1× 10−3 s and na = 4.

When dispersion dominates, i. e. Pe = 0.28, the accuracy of the scheme is mainly
influenced by the size of ∆td, as can be seen in Table 4.3. First order convergence rate can
be seen in every row where the values increase linearly with ∆td. It is worth noting that

Table 4.3: One dimensional example. Relative error norm | e3 | and CPU times for
Pe = 0.28.

∆td .25× 10−3 .5× 10−3 1× 10−3
na | e3 | CPU | e3 | CPU | e3 | CPU
1 0.69e-3 35.94 1.42e-3 20.20 2.87e-3 12.07
2 0.56e-3 38.20 1.13e-3 21.51 2.30e-3 12.71
4 0.50e-3 44.16 1.00e-3 22.60 2.01e-3 13.95
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Table 4.4: One dimensional example. Relative error norm | e3 | and CPU times for
Pe = 2.88.

∆td .25× 10−3 .5× 10−3 1× 10−3 2× 10−3
na | e3 | CPU | e3 | CPU | e3 | CPU | e3 | CPU
1 2.21e-3 29.28 4.06e-3 14.77 7.91e-3 7.72
2 1.55e-3 32.17 2.46e-3 16.06 4.42e-3 8.43 8.57e-3 4.67
4 1.23e-3 38.09 1.76e-3 19.08 2.86e-3 9.90 5.25e-3 5.44
8 1.10e-3 50.16 1.43e-3 25.10 2.13e-3 12.83 3.52e-3 6.78
16 1.31e-3 36.84 1.80e-3 18.48 2.62e-3 9.65
32 1.62e-3 30.25 2.30e-3 15.18

Table 4.5: One dimensional example. Relative error norm | e3 | and CPU times for
Pe = 28.8.

∆td 1× 10−3 2× 10−3 4× 10−3 8× 10−3 16× 10−3 32× 10−3
na | e3 | CPU | e3 | CPU | e3 | CPU | e3 | CPU | e3 | CPU | e3 | CPU

×102 (s) ×102 (s) ×102 (s) ×102 (s) ×102 (s) ×102 (s)
1 4.62 7.19
2 2.25 7.98 4.70 3.98
4 1.20 9.54 2.24 4.70 4.75 2.35
8 0.78 12.55 1.19 6.21 2.26 3.08 4.47 1.66
16 0.66 18.60 0.79 9.25 1.21 4.59 2.29 2.42 4.11 1.23
32 0.61 37.80 0.63 15.37 0.79 7.59 1.28 3.94 2.30 2.02 3.76 0.99
64 0.60 55.56 0.59 27.40 0.63 13.52 0.86 7.17 1.36 3.50 2.38 1.73
128 0.59 51.01 0.59 25.50 0.70 13.48 0.99 6.65 1.54 3.08
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Table 4.6: One dimensional example. Relative error norm | e3 | and CPU times for Pe
= 115.

∆td 1× 10−3 2× 10−3 4× 10−3 8× 10−3 16× 10−3 32× 10−3
na | e3 | CPU | e3 | CPU | e3 | CPU | e3 | CPU | e3 | CPU | e3 | CPU

×102 (s) ×102 (s) ×102 (s) ×102 (s) ×102 (s) ×102 (s)
1 6.06 7.28
2 2.67 8.03 5.62 4.00
4 1.78 9.51 2.64 4.71 5.85 2.32
8 1.90 12.33 1.74 6.16 2.92 3.06 5.48 1.58
16 2.10 18.39 1.88 9.03 1.60 4.50 2.66 2.33 4.46 1.16
32 2.10 14.90 1.80 7.45 1.44 3.82 2.39 1.91 3.57 0.97
64 2.02 13.27 1.65 6.75 1.63 3.41 1.88 1.71
128 1.66 6.33 1.56 3.20
256 1.81 6.19

the relative error significantly decreases from the case with na = 1 to na = 4 (by about 30
%), whereas the CPU time increases only by 15% on the average. This fact suggests using
na > 1 also for very small Peclet numbers.

At Pe = 2.88, an intermediate value of the Peclet number, (Table 4.4), we still
recognize first order convergence rate along the rows. However, the error decrease along the
diagonals is now much less pronounced, indicating that in this case small ∆ta are needed to
maintain accuracy. These results are exemplified graphically in Figure 4.1 where four plots
of | e3 | vs CPU time corresponding to four values of ∆td are reported. For each curve, the
data points refer to the na values of Table 4.4. Hence, the optimal (∆td, na) combination
can be found on the intersection of the envelope of the curves with the horizontal line
corresponding to the desired accuracy. Obviously, there is no unique strategy to choose the
optimal ∆t values, however a few observations can be helpful for this purpose. Efficiency
reasons demand that ∆td be not too small, so as to minimize the number of linear system
solutions. On the other hand, accuracy at this level of Peclet numbers already requires
small ∆ta, and thus large na(> 4). For example, a reasonable choice for our test case could
be ∆td = 10

−3 and na = 16.
At Pe = 28.8 advection starts to dominate over dispersion. The value of na is now

important, as can be seen from the significant error decrease in the columns of Table 4.5.
We also note that the error remains almost constant along the diagonals, i. e. for constant
∆ta and increasing ∆td. Note that, for each ∆td value, the increase in accuracy tends to
be smaller as na increases, suggesting that after a certain value of na, convergence tends
to stagnate. From this observation, we may argue that the truncation error of the scheme
is proportional to ∆td and to ∆ta:

| εT | ≈ O
(

∆td, h
2
)

+O
(

∆ta, h
2
)

= | εTd |+ | εTa |. (4.13)

With this model we have that, for constant ∆td, lim
na→∞

| εT | = lim
∆ta→0

| εT | = | εTd | explain-
ing the experimented numerical behavior.
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Figure 4.1: Relative accuracy vs CPU time for different ∆td and fixed Peclet number
= 2.88.

At even higher Peclet numbers, (Table 4.6, Pe = 115) the same behavior can be
observed with one notable exception. For constant ∆td the error attains a minimum value
for a specific na. This behavior suggests that errors due to the operator splitting technique
accumulate with the advective time step and thus εTa = εTa(na).

Two dimensional infiltration of chloride ion in a surface aquifer. The applica-
bility of the proposed approach is shown on a realistic two dimensional problem of infil-
tration of a conservative contaminant into a saturated-unsaturated surface aquifer. The
test case considers a ditched-drained aquifer with incident steady rainfall and trickle in-
filtration of chloride ion [26]. The geometry of the domain and the boundary conditions
employed in the solution of the flow and transport problems are described in Figure 4.2.
The boundary conditions imposed along face AG correspond to the presence of a seepage
face and thus to an outflow condition from which the aquifer is drained. The saturated-
unsaturated flow equation is solved in steady state conditions by means of a Richards’
equation solver based on the Mixed Hybrid Finite Element method [4]. The physical pa-
rameters of the simulation assume the following values: Vr = 0.1 cm/d, Vs = 0.05 cm/d
(Fig. 4.2), Ks = 1 cm/d. The moisture retention curves of [30] are used with the following
parameter values: α = 0.015, β = 2, γ = 3, a = 2, b = 3.5, ψs = −10 cm, Swr = 0.01.
The Darcy velocity field ~v = (vx, vy)

T and water saturation values Sw as calculated from
the solution of the flow problem are used in a 120-day simulation of the transport of the
chloride ion. For this latter problem we have used a dispersion tensor D = diag(D1, D2)
as given by [1]: D1 = αL|~v| + nSwD0 and D2 = αT |~v| + nSwD0 where |~v| =

√

v2x + v
2
y ,

αL = 0.5 cm is the longitudinal dispersivity, αT = 0.1 cm is the transverse dispersivity,
φ = 0.30 is the porosity of the medium, and D0 = 1.e−06 cm2/s is the molecular diffusion
coefficient.

The mesh employed is made up of 2501 nonuniform triangles and 4800 edges. The
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Figure 4.2: Schematic description of the domain and boundary conditions for the two
dimensional test case.

Figure 4.3: Computational mesh used in the two dimensional test case.
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Figure 4.4: Two dimensional test-case: concentration contours at 14.7 days (top) and
45.2 days (bottom).

time step sizes are ∆td = 0.5 days together with na = 50. The simulations is characterized
by CFL = 0.44 and Pe = 5.55. With this choice of parameters the advective phase of
the time-splitting algorithm is approximately twice as expensive than the dispersive phase
(0.73 and 0.41 seconds per time step, respectively, on a DEC Alpha-600 workstation).

In Figures 4.4 and 4.5 the solute concentration contours at 14.7, 45.2, 90.2, and
120 days of simulation are shown. At the beginning the concentration plume infiltrates
downwards with the unsaturated flow. Once it reaches the water table, it finds a more
pronounced horizontal velocity in the saturated zone, starts moving towards the seepage
face, and exits the domain.

A few observations from the numerical standpoint are worth mentioning. The so-
lution obtained with the proposed approach does not present oscillations in any part of
the domain and at any time. This verifies that the property of the FV scheme of being
TVD is retained in the time-splitting algorithm, which maintains monotonicity in all our
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Figure 4.5: Two dimensional test case: concentration contours at 90.2 days (top) and
120 days (bottom).
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Figure 4.6: Two dimensional test-case: concentration contours at 45.2 days as obtained
by standard Galerkin FEM scheme.

simulations. The plume shape in Figures 4.4 and 4.5 shows a front that is slightly steeper
than the corresponding front calculated by standard Galerkin Finite Elements (GFE) with
no upwind, as can be seen from Figure 4.6 that shows the solution to the same problem at
45.2 days as obtained by GFE [23]. This confirms the fact that the combination of MHFE
and FV introduces less numerical diffusion than standard FE. Finally, the mass balance
in all simulations is satisfied within the accuracy of the linear system solution in the dis-
persive phase (i.e. 10−10), in contrasts with FE applications where mass balance errors of
few percents are commonly observed. These characteristic features of the time-splitting
algorithm developed here do not change at larger Peclet numbers as long as the stability
criteria for the advection step are satisfied.

4.3 Extension of the time-splitting technique to second order

accuracy in time

As seen in Section 4.2.3, the time-splitting algorithm introduces an error of the order of ∆t
in the overall approach. It is obvious then that even if we set θ = 0.5 in equation (4.3), i.e.
we use the second order time discretizations (Crank-Nicolson + Midpoint), global second
order accuracy in time is not achieved.

A careful analysis of the truncation error shows that theO (∆t) error is proportional
to the dispersion and advection discrete fluxes. A correction term can be calculated to
recover second order accuracy in time.

4.3.1 The second order algorithm

Let x = (x1, x2) denote the coordinates of a point in the domain Ω with convex boundary
Ω̄ in R2. The advection-dispersion equation (4.1) can be rewritten as (for simplicity we
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assume φ = 1 and omit the vector notation),

∂c

∂t
+∇ · (F +G) = f on Ω× (0, T ] (4.14a)

F = vc (4.14b)

G = −D∇c (4.14c)

where F and G are the advective and dispersive fluxes, respectively. The domain Ω is
again discretized into m triangles Tl, l = 1, . . . ,m with diameters ≤ h.

Recall that we have called the approximations to c and G by c̃ and G̃, respectively,
as defined in equation (3.20) and (3.21).

Given c̃k ∈ Ψh, application of the operator splitting algorithm is summarized as
follow: solve

∂ĉ

∂t
+∇ · F (x, t, ĉ) = 0 on Ω× (tk, tk+1], (4.15)

with initial condition c̃k. We denote the solution generated at this step by ĉk+1. Next solve

∂c∗

∂t
+∇ ·G(x, t, c∗) = 0 on Ω× [tk, tk+1], (4.16)

with initial condition ĉk+1. The solution generated here will approximate ck+1.
For the discretization of the equations we start from equation (4.3) with θ = 0.5

and Φl = 1. The advection flux equation is approximated by the Finite Volume scheme on
unstructured grids reported in Chapter 2. For this purpose we rewrite equation (4.6) as:

ĉk+1l = c̃kl −∆tEk+1/2(x, c̃k+1/2), (4.17)

where Ek+1/2(x, c̃k+1/2) ∈Wh is the approximation to F at time t
k+1/2 =

tk + tk+1

2
, i.e.:

E(x, c̃k+1/2) = Ek+1/2 =

=
1

|Tl|

3
∑

j=1

Hj(Ll(x
in, c̃k+1/2), Ll(x

out, c̃k+1/2))|ej | ≈
1

∆t

∫ tk+1

tk

∫

∂Tl

F (x, t, ĉ) · n.

The crucial point for obtaining second order accuracy when this step is joined up with the
dispersion step is in the construction of Ek+1/2, as we will see later.

Next, we apply the discontinuous RT0 Mixed Hybrid Finite Element method to-
gether with the Crank-Nicolson scheme in time. Equations (4.8a-4.8b) can be written in
this case as:

((D−1G̃)k+1/2, w)− (c̃k+1/2,∇ · w) = −(λk+1/2, w · n)∂Ω, w ∈Wh (4.18a)

(∂tc̃
k+1, ψ) + (∇ · G̃k+1/2, ψ) = −(∇ · Ek+1/2, ψ), ψ ∈ Ψh, (4.18b)

where λ is the Lagrange multiplier function, while ∂tc̃
k+1 represents the backward differ-

encing in time

∂tc̃
k+1 =

c̃k+1 − c̃k
∆t

.
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At this point system (4.18) can be solved, by considering that the unknowns are now
c̃k+1, G̃k+1 and λk+1. Note that the solution pair (c,G) satisfies

((D−1G)k+1/2, w)− (ck+1/2,∇ · w) = −(λk+1/2, w · n)∂Ω, w ∈Wh (4.19a)

(
∂ck+1

∂t
, ψ) + (∇ ·Gk+1/2, ψ) = −(∇ · F k+1/2, ψ), ψ ∈ Ψh. (4.19b)

In order to derive an error estimate for our scheme we will compare our approximate
solution with the approximate solution of the elliptic projection of (4.18). Let c̄(·, t) ∈ Ψh,
Ḡ(·, t) ∈ Wh denote the mixed hybrid method solutions to the elliptic problem associated
with (4.14); that is, for each t ∈ [0, T ],

((D−1Ḡ(·, t), w)− (c̄(·, t),∇ · w) = −(λ(·, t), w · n)∂Ω, w ∈Wh (4.20a)

(∇ · Ḡ(·, t), ψ) = (∇ ·G(·, t), ψ)

= −(∂c(·, t)
∂t

, ψ)− (∇ · F (·, t), ψ), (4.20b)

ψ ∈ Ψh. (4.20c)

For the following it is useful to introduce π2c(·, t) defined as the L2-projection of c(·, t) into
Ψh. It has been shown that [38, 17]

‖c̄− π2c‖ ≤ Ch2,
where C is a generic constant, independent of h and ∆t.

Let F̃ ∈Wh be such that F̃ · n at the midpoint of a edge of any triangle Tl is equal
to the integral average of F · n over that edge; then F̃ satisfies

(∇ · (F̃ − F )(·, t), ψ) = 0, ψ ∈ Ψh. (4.21)

Let
ξ = c̃− c̄, η = G̃− Ḡ, β = π2c− c̄. (4.22)

For c and the data sufficiently smooth, we assume the numerical flux Ek+1/2(x, c̃k+1/2)
satisfies the following approximation result:

‖Ek+1/2(·, c̃k+1/2)− F̃ k+1/2‖ ≤ C(‖ξk‖+ ‖ξk−1‖+ ‖βk‖+ ‖βk−1‖+ h2 +∆t2). (4.23)

We will directly verify (4.23) for the Finite Volume scheme described in para-
graph 4.3.2.

Then, we can state the following error estimate for the method outlined above,
showing second order accuracy in space and time.

Theorem 4.2. Let the data and the solution pair (c,G) be sufficiently smooth and
assume (4.23) holds. Let ξ, η, β defined as in (4.22). Assume 0 < D−1 < d∗, where d∗ is
a positive constant. Then

max
k
‖ξk+1‖+ (

N−1
∑

k=0

‖(D−1/2η)k+1/2‖2∆t) 12 ≤

≤ C(d∗)[h2 +∆t2 + (
N
∑

k=0

‖βk‖2∆t) 12+

+(
N−1
∑

k=1

‖βk−1‖2∆t) 12 + (
∫ T

0

‖∂β(·, t)
∂t

‖2dt) 12 ],

(4.24)
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where C(d∗) is a constant dependent only on d∗.
Proof. Subtracting (4.20a) from (4.18a) we have

((D−1η)k+1/2, w)− (ξk+1/2,∇ · w) = 0, w ∈Wh. (4.25)

Subtracting (4.20b) from (4.18b), using the L2- projection of c and applying (4.21), we get

(∂tξ
k+1, ψ) + (∇ · ηk+1/2, ψ) = −(∂tc̄k+1, ψ) + (

∂ck+1/2

∂t
, ψ)+

+(∇ · (F k+1/2, ψ)− (∇ · Ek+1/2, ψ) =

= (∂tβ
k+1, ψ) + (

∂ck+1/2

∂t
− ∂tck+1, ψ)+

+(∇ · (F̃ k+1/2 − Ek+1/2), ψ),
ψ ∈ Ψh,

(4.26)

Setting w = ηk+1/2 and ψ = ξk+1/2 and adding (4.25) and (4.26), we obtain

(∂tξ
k+1, ξk+1/2) + (D−1ηk+1/2, ηk+1/2) = (∂tβ

k+1, ξk+1/2)+

+(
∂ck+1/2

∂t
− ∂tck+1, ξk+1/2)+

+(∇ · (F̃ k+1/2 − Ek+1/2), ξk+1/2).

(4.27)

An upper bound to the first two terms of (4.27) is given by

(∂tβ
k+1 +

∂ck+1/2

∂t
− ∂tck+1, ξk+1/2) ≤

≤ 1
2
‖∂tβk+1 +

∂ck+1/2

∂t
− ∂tck+1‖2 +

‖ξk+1/2)‖2
2

≤

≤ ‖∂tβk+1‖2 + ‖
∂ck+1/2

∂t
− ∂tck+1‖2 + ‖

ξk+1 + ξk

2
‖2 ≤

≤ C1(
1

∆t

∫ tk+1

tk
‖∂β
∂t
‖2dt+∆t4) + C2(‖ξk‖2 + ‖ξk+1‖2).

(4.28)

In fact
∂ck+1/2

∂t
− ∂tck+1 =

∂ck+1/2

∂t
− ck+1 − ck

∆t
= O(∆t

2

24
),

while ∂tβ
k+1 =

1

∆t

∫ tk+1

tk

∂β

∂t
, therefore

|∂tβk+1| ≤
1

∆t

∫ tk+1

tk
|∂β
∂t
| ≤

≤ 1
∆t
(

∫ tk+1

tk
1)1/2(

∫ tk+1

tk
|∂β
∂t
|2)1/2 =

=
1

(∆t)1/2
(

∫ tk+1

tk
|∂β
∂t
|2)1/2

so that

‖∂tβk+1‖2 =
∫

Ω

|∂tβk+1|2 ≤
1

(∆t)
(

∫ tk+1

tk
‖∂β
∂t
‖2),
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where ‖∂β
∂t
‖ ≤ Ch and for c and the data sufficiently smooth ‖∂β

∂t
‖ ≤ Ch2 [61, 11].

To bound the last term of equation (4.27), we set w = F̃ k+1/2−Ek+1/2 in (4.25), obtaining

(∇ · (F̃ k+1/2 − Ek+1/2), ξk+1/2) = ((D−1η)k+1/2, F̃ k+1/2 − Ek+1/2) ≤

≤ 1
2
‖(D−1/2η)k+1/2‖2 + d∗

2
‖F̃ k+1/2 − Ek+1/2‖2 ≤

≤ 1
2
‖(D−1/2η)k+1/2‖2 + C3(d∗)(‖ξk‖2 + ‖ξk−1‖2 + ‖βk‖2 + ‖βk−1‖2 + h4 +∆t4).

(4.29)
In the last inequality we have applied (4.23).
Now, substituting (4.29) and (4.28) into (4.27) and using

((D−1η)k+1/2, ηk+1/2) = ‖(D−1/2η)k+1/2‖2

we obtain

(∂tξ
k+1, ξk+1/2) +

1

2
‖(D−1/2η)k+1/2‖2 ≤

≤ C1
1

∆t

∫ tk+1

tk
‖∂β
∂t
‖2dt+ C2(‖ξk‖2 + ‖ξk+1‖2)+

+C3(d∗)(‖ξk‖2 + ‖ξk−1‖2 + ‖βk‖2 + ‖βk−1‖2 + h4)+
+(C3(d∗) + C1)∆t4.

(4.30)

Considering that

(∂tξ
k+1, ξk+1/2) =

1

∆t
(‖ξk+1‖2 − ‖ξk‖2)

multiplying (4.30) by 2∆t and using, for simplicity, a unique constant C(d∗), we get

‖ξk+1‖2 − ‖ξk‖2 +∆t‖(D−1/2η)k+1/2‖2 ≤

≤ 2C(d∗)
∫ tk+1

tk
‖∂β
∂t
‖2dt+ C(d∗)(‖ξk−1‖2 + ‖ξk‖2 + ‖ξk+1‖2)2∆t+

+C(d∗)(‖βk‖2 + ‖βk−1‖2)2∆t+ C(d∗)(h4 +∆t4)2∆t.

Summing on k, we obtain:

‖ξN‖2 − ‖ξ0‖2 + 2C(d∗)
N−1
∑

k=0

‖(D−1/2η)k+1/2‖2∆t ≤

≤ 2C(d∗)
∫ T

0

‖∂β
∂t
‖2dt+ 2C(d∗)

N−1
∑

k=0

(‖βk‖2 + ‖βk−1‖2)∆t+ C(d∗)(h4 +∆t4)∆t+

+2C(d∗)
N−1
∑

k=0

(‖ξk−1‖2 + ‖ξk‖2 + ‖ξk+1‖2)∆t.

Isolating on the left hand side the term ‖ξN‖2, the previus expression can be transformed
as

‖ξN‖2 ≤ γN + C(d∗)∆t
N−1
∑

k=0

‖ξk‖2,
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where

γN = −2C(d∗)
N−1
∑

k=0

‖(D−1/2η)k+1/2‖2∆t+ 2C(d∗)
∫ T

0

‖∂β
∂t
‖2dt+

+2C(d∗)
N−1
∑

k=0

(‖βk‖2 + ‖βk−1‖2)∆t+ C(d∗)(h4 +∆t4)∆t.

Therefore we can apply the discrete Gronwall’s Lemma, and we obtain (4.24). Thus, the
proof of the theorem is completed.

About Gronwall’s Lemma. We recall that the discrete Gronwall’s Lemma can be
stated in the following way:

Lemma 4.3 (discrete Gronwall’s Lemma). Let f , g be non negative functions
defined on the grid {xj = jh}Jj=0, with g being non decreasing (g(t) ≤ g(v) if v ≥ t).
If

f(xj) ≤ g(xj) + Ch

j−1
∑

k=0

f(xk) 0 ≤ j ≤ J

then
f(xj) ≤ g(xj)e

Cxj 0 ≤ j ≤ J.

4.3.2 Numerical flux approximation

As we have shown in Chapters 2 and 3, piecewise linear reconstruction together with a
limitating procedure assures second order accuracy in space in the FV fornulation, while
the MHFE scheme achieves superconvergence (quadratic) at the centroids of the triangles.
Therefore second order in space is obtained. Theorem 4.2 assures second order accuracy
also in time when the midpoint rule for the FV scheme and the Crank-Nicolson procedure
for the MHFE method are used as time discretizations, only if condition (4.23) is satisfied
by FV. In the following we will prove that this inequality holds only if a correction term
is added to the time stepping procedure of the advection equation.
The usual midpoint (or Runge) scheme applied to the FV algorithm can be written as

c̃1 = c̃k − ∆t
2
E(x, c̃k)

c̃k+1 = c̃k −∆tE(x, c̃1)

This technique is derived by means of a Taylor series expansion of the type:

c̃k+1/2 = c̃k +
∆t

2
c̃kt +O(∆t2). (4.31)

This fact has to be taken into account in the FV linear interpolation of the reconstruction
phase. The linear interpolant Ll(x) over Tl at time t

k is given by the plane interpolating
the values of concentration of the centroids of the three neighboring triangles, e.g., c̃ka at
the centroid xa = (x1a, x2a), c̃

k
b at xb, c̃

k
c at xc. Its expression can be written as

Ll(x, c̃
k) = c̃ka + Llx1(c̃

k)(x1 − x1a) + Llx2(c̃k)(x2 − x2a).
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where the coefficients Llx1(c̃
k) and Llx2(c̃

k) take on the form:

Llx1(c̃
k) =

(c̃kb − c̃ka)(x2c − x2a) + (c̃kc − c̃ka)(x2a − x2b)
(x1b − x1a)(x2c − x2a) + (x1c − x1a)(x2a − x2b)

(4.32)

Llx2(c̃
k) = − (c̃kc − c̃ka)(x1b − x1a) + (c̃ka − c̃kb )(x1c − x1a)

(x1b − x1a)(x2c − x2a) + (x1c − x1a)(x2a − x2b)
. (4.33)

We can prove the following lemma that will be used in the proof of (4.23):
Lemma 4.4. The linear interpolant constructed for the proposed FV scheme satisfies

the inequalities:

h|Llx1(c̃k)| ≤
∑

i∈T
|c̃ki | and h|Llx2(c̃k)| ≤

∑

i∈T
|c̃ki |,

where T is the set of indeces corresponding to triangle Tl and its neighbors.
Proof. Since h is the diameter of the triangulation and the distance between two

neighboring centroids is greater than h but smaller than 2h, from equation (4.32) we have:

|(c̃kb − c̃ka)(x2c − x2a) + (c̃kc − c̃ka)(x2a − x2b)| ≤
≤ |c̃kb − c̃ka|2h+ |c̃kc − c̃ka|2h ≤ 2h

∑

i∈T
|c̃ki |

and
|(x1b − x1a)(x2c − x2a) + (x1c − x1a)(x2a − x2b)| ≥ 2h2.

Therefore,

|Llx1(c̃k)| ≤
2h
∑

i∈T
|c̃ki |

2h2

and
h|Llx1(c̃k)| ≤

∑

i∈T
|c̃ki |.

The same can be done for Llx2(c̃
k) and the lemma is proved.

In the first step of the Runge scheme we need to calculate Ll(x, c̃
k+1/2). Since the

initial conditions c̃k come from the MHFE solution (4.18) at the previous time step, we
can use (4.31) to evaluate c̃k+1/2. Thus we need to evaluate c̃kt . This can be accomplished
in two ways. One way consists in evaluating the spatial discretization of the dispersion
and advection terms at tk, since ckt = [−∇ · (F + G) + f ]k. Alternatively, we can simply
evaluate c̃kt by backward finite difference, and obtain:

c̃k+1/2 =
3

2
c̃k − 1

2
c̃k−1 +O(∆t2).

Thus, the linear reconstruction at time tk+1/2 takes on the following form:

Ll(x, c̃
k+1/2) =

3

2
c̃ka −

1

2
c̃k−1a + Llx1(c̃

k+1/2)(x1 − x1a) + Llx2(c̃k+1/2)(x2 − x2a) (4.34)

where

Llx1(c̃
k+1/2) =

=

[

3
2
c̃kb − 1

2
c̃k−1b − (3

2
c̃ka − 1

2
c̃k−1a )

]

(x2c − x2a) +
[

3
2
c̃kc − 1

2
c̃k−1c − (3

2
c̃ka − 1

2
c̃k−1a )

]

(x2a − x2b)
(x1b − x1a)(x2c − x2a) + (x1c − x1a)(x2a − x2b)
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Llx2(c̃
k+1/2) is analogously defined. A similar result as in Lemma 4.4 can be proved for

Llx1(c̃
k+1/2) and Llx2(c̃

k+1/2). In fact it is straightforward to prove the following inequalities:

h|Llx1(c̃k+1/2)| ≤
3

2

∑

i∈T
|c̃ki |+

1

2

∑

i∈T
|c̃k−1i | ≤ C

∑

i∈T
(|c̃ki |+ |c̃k−1i |) (4.35)

and
h|Llx2(c̃k+1/2)| ≤ C

∑

i∈T
(|c̃ki |+ |c̃k−1i |) (4.36)

Finally, the numerical flux Ek+1/2 is given by

Ek+1/2 =
1

|Tl|

3
∑

j=1

Hj(Ll(x
in, c̃k+1/2), Ll(x

out, c̃k+1/2)) (4.37)

where Hj is the two-point Lipschitz monotone flux defined in Chapter 2.

In order to verify (4.23), we similarly construct c̄
in,k+1/2
xlj and c̄

out,k+1/2
xlj from c̄ given

in (4.20a), and π2c
in,k+1/2
xlj , π2c

out,k+1/2
xlj , c

in,k+1/2
xlj and c

out,k+1/2
xlj using π2c and c, respectively.

Thus, we can state the following lemma.
Lemma 4.5. Relation (4.23), i.e.

‖Ek+1/2(·, c̃k+1/2)− F̃ k+1/2‖ ≤ C(‖ξk‖+ ‖ξk−1‖+ ‖βk‖+ ‖βk−1‖+ h2 +∆t2)

holds when in the FV scheme the linear interpolant is given by (4.34).
Proof. Consider that

H
k+1/2
j − F̃ k+1/2

lj =

Hj(Ll(x
in, c̃k+1/2), Ll(x

out, c̃k+1/2))− 1
ej

∫

ej

F (c(x, tk+1/2)) · nj =

[Hj(Ll(x
in, c̃k+1/2), Ll(x

out, c̃k+1/2))−Hj(Ll(x
in, c̄k+1/2), Ll(x

out, c̄k+1/2))]+

+[Hj(Ll(x
in, c̄k+1/2), Ll(x

out, c̄k+1/2))−Hj(Ll(x
in, π2c

k+1/2), Ll(x
out, π2c

k+1/2))]+

+[Hj(Ll(x
in, π2c

k+1/2), Ll(x
out, π2c

k+1/2))−Hj(Ll(x
in, ck+1/2), Ll(x

out, ck+1/2))]+

+[Hj(Ll(x
in, ck+1/2), Ll(x

out, ck+1/2))− F (ck+1/2j ) · n]+
+[F (c

k+1/2
j ) · n− 1

ej

∫

ej

F (c(x, tk+1/2)) · nj] =

R1 + . . .+R5.

(4.38)

We now examine the terms R1 through R5.
By Lipschitz continuity of Hj and (4.35),

|R1| ≤ C(|c̃in,k+1/2xlj
− c̄in,k+1/2xlj

|+ |c̃out,k+1/2xlj
− c̄out,k+1/2xlj

|) ≤
C
∑

i∈T
(|c̃kxi − c̄

k
xi
|+ |c̃k−1xi

− c̄k−1xi
|) = C

∑

i∈T
(|ξki |+ |ξk−1|) (4.39)

Applying similar arguments to R2 and R3,

|R2| ≤ C
∑

i∈T
(|c̄kxi − π2c

k
xi
|+ |c̄k−1xi

− π2ck−1xi
|) =

= C
∑

i∈T
(|βki |+ |βk−1i |)

(4.40)
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and, using the fact that |π2ci − ci| = O(h2),

|R3| ≤ C
∑

i∈T
(|π2ckxi − c

k
xi
|+ |π2ck−1xi

− ck−1xi
|) ≤ Ch2. (4.41)

By observing that the linear reconstruction is of second order accuracy in space and time
and by (4.35)

|R4| ≤ C(|cin,k+1/2xi − ck+1/2xi |+ |π2cout,k+1/2xi − ck+1/2xi |) ≤
C(∆t2 + h2). (4.42)

Finally, by considering that we have used the midpoint rule to integrate in space and time,
it is easy to see that

|R5| ≤ C(∆t2 + h2) (4.43)

Multiplying (4.39)-(4.43) by h2, summing on all over the edges of the triangulation and
using equivalence of norms,

‖Ek+1/2 − F̃ k+1/2‖ ≤ C∗
m
∑

l=0

3
∑

j=1

|Hk+1/2
lj − F̃ k+1/2

lj |2h2 ≤

C(C∗)(‖ξk‖+ ‖ξk−1‖+ ‖βk‖+ ‖βk−1‖+ h2 +∆t2),

where C∗ is an equivalence constant between the continuous and discrete L2 norms. In
this way, we have proved that (4.23) holds.

4.3.3 Numerical results about second order accuracy

The numerical convergence rate of the fully second order accurate in time scheme is tested
on the same one-dimensional model problem studied in Section 4.2.3, solved in a two-
dimensional grid system. The numerical convergence of the scheme is evaluated by calcu-
lating L1 and L2 errors at different grid levels (|e`,1|, |e`,2|). Since the L2 norm is bounded
by the L1 norm, we expect a smaller order of accuracy in the latter case. The rates
of convergence are computed level after level and then also by applying a least squares
approximation (l.s.a.).

For all the subsequent test runs the CFL number is set constant and equal to 0.28.
Passing from one level to the next, the time step ∆t is halved, and thus the Pe number
decreases by a factor of 2 in passing from a coarser to a finer level.

The simulations are aimed at numerically verifying the theoretical convergence rate
of the time-splitting technique scheme under different Pe numbers. We compare the results
obtained by using a first order in time scheme, that is the Euler scheme (Eu), with those ob-
tained by using a second order in time scheme. We consider three different time discretiza-
tion techniques: the midpoint rule taking into account the correction term (MP+disp), the
midpoint and Runge-Kutta schemes without considering the correction term (MP+no-disp
and RK+no-disp respectively).

Table 4.7 and 4.8 report the errors and convergence rate at the different levels for
the case in which dispersion is D = 4×10−3 m2/s and velocity is v = 0.5 m/s. These values
correspond to Peclet numbers varying from 11.5 (` = 1) to 1.44 (` = 4), that is dispersion
is dominant. The time step ∆t varies in the interval [2× 10−3, 2.5× 10−4]. In Table 4.7,
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Table 4.7: tk = 0.1 s. Case of dominant dispersion.

Eu MP+disp MP+no-disp RK+no-disp
` |e`,1| rate |e`,1| rate |e`,1| rate |e`,1| rate
1 2.69e-2 2.20e-2 2.15e-2 2.07e-2
2 1.24e-2 1.12 9.26e-3 1.25 8.91e-3 1.27 8.75e-3 1.24
3 4.29e-3 1.53 2.45e-3 1.92 2.37e-3 1.91 2.31e-3 1.92
4 1.78e-3 1.27 6.34e-4 1.95 5.60e-4 2.08 5.61e-4 2.04

l.s.a. rate l.s.a. rate l.s.a. rate l.s.a. rate
1.33 1.73 1.77 1.75

` |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 2.68e-2 2.23e-2 2.20e-2 2.15e-2
2 1.20e-2 1.16 8.83e-3 1.34 8.90e-3 1.30 8.72e-3 1.30
3 4.09e-3 1.55 2.38e-3 1.89 2.41e-3 1.88 2.32e-3 1.91
4 1.62e-3 1.34 6.44e-4 1.88 6.10e-4 1.98 5.81e-4 2.00

l.s.a. rate l.s.a. rate l.s.a. rate l.s.a. rate
1.37 1.72 1.74 1.75

the results are relative to a final time tk = 0.1 s, while in Table 4.8 tk is equal to 1 s. As
we can observe from Table 4.7, the errors computed in L1 norm are slightly smaller than
those computed in L2 norm. The results obtained by using the Euler scheme in time show,
as expected, first order accuracy. For all the other time integration schemes global second
order convergence rates are achieved. The correction term does not influence the solution
at this early time. However, at tk = 1 s, we can observe that the schemes MP+no-disp
and RK+no-disp are only first order accurate (but with errors that are smaller than the
Eu scheme), while MP+disp displays a superlinear rate of convergence: its rate is equal to
1.61 passing from ` = 2 to ` = 3 against 1.31 for MP+no-disp and 1.32 for RK+no-disp,
and it is 1.32 passing from ` = 3 to ` = 4 against 1.08 and 1.11 for the other two schemes,
respectively.

Hence, as predicted by the theory developed in Section 4.3, the introduction of the
corrective term in the FV scheme is crucial to improve accuracy when dispersion is not
negligible. When advection is dominant, the truncation error due to dispersion is always
small compared to that one due to the advection flux, and we therefore expect only little
differences between the three second order time discretizations. We study this case being
D = 4× 10−5 m2/s and v = 0.5 m/s. Correspondingly, the Peclet number varies between
1150 (` = 1) and 144 (` = 4). In Table 4.9 we have reported errors and convergence
rates at the time tk = 1 s. As we can see, the Eu scheme does not attains asymptotic
convergence for these parameters. The error displays a minimum value at grid level ` = 2
and further one refinement does not improve accuracy. The other schemes display more
than first order accuracy. We observe about 1.34 convergence rate in L1 norm and a little
more than first order in L2 norm. Here, we observe a different behavior between the two
norms used, because of the advection domination. As expected, for MP+disp the errors
are slightly smaller than for the other schemes, but the behavior is very similar.
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Table 4.8: tk = 1 s. Case of dominant dispersion.

Eu MP+disp MP+no-disp RK+no-disp
` |e`,1| rate |e`,1| rate |e`,1| rate |e`,1| rate
1 5.56e-3 2.84e-3 2.70e-3 2.63e-3
2 2.80e-3 0.99 9.39e-4 1.60 9.44e-4 1.52 9.04e-4 1.54
3 1.36e-3 1.04 3.07e-4 1.61 3.80e-4 1.31 3.62e-4 1.32
4 6.85e-4 0.99 1.23e-4 1.32 1.80e-4 1.08 1.68e-4 1.11

l.s.a. rate l.s.a. rate l.s.a. rate l.s.a. rate
1.01 1.52 1.30 1.32

` |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 7.39e-3 4.18e-3 4.12e-3 4.07e-3
2 3.47e-3 1.09 1.34e-3 1.64 1.40e-3 1.56 1.35e-3 1.59
3 1.63e-3 1.09 4.27e-4 1.65 5.15e-4 1.44 4.96e-4 1.44
4 8.20e-4 0.99 1.63e-4 1.39 2.29e-4 1.17 2.18e-4 1.19

l.s.a. rate l.s.a. rate l.s.a. rate l.s.a. rate
1.06 1.57 1.39 1.41

Table 4.9: tk = 1 s. Case of dominant advection.

Eu MP+disp MP+no-disp RK+no-disp
` |e`,1| rate |e`,1| rate |e`,1| rate |e`,1| rate
1 1.94e-2 2.88e-2 2.90e-2 2.88e-2
2 5.48e-3 1.82 1.18e-2 1.29 1.19e-2 1.28 1.19e-2 1.27
3 4.55e-3 0.27 4.85e-3 1.28 4.83e-3 1.30 4.88e-3 1.29
4 5.28e-3 - 1.75e-3 1.47 1.78e-3 1.44 1.78e-3 1.45

l.s.a. rate l.s.a. rate l.s.a. rate l.s.a. rate
0.59 1.34 1.34 1.33

` |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 6.45e-2 7.88e-2 7.93e-2 7.92e-2
2 2.01e-2 1.68 3.52e-2 1.16 3.60e-2 1.14 3.58e-2 1.14
3 2.02e-2 - 1.76e-2 1.00 1.77e-2 1.02 1.78e-2 1.01
4 2.24e-2 - 6.70e-3 1.39 6.83e-3 1.37 6.79e-3 1.39

l.s.a. rate l.s.a. rate l.s.a. rate l.s.a. rate
0.46 1.17 1.16 1.16
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5 Coupled flow and transport problem in groundwa-

ter

Many problems in subsurface hydrology can be studied by a mathematical model of density-
dependent flow and transport coupled via the fluid density. For example, it is used to
describe the direction of dissolved contaminant migration, to define the limits of a capture
zone for a contamination recovery well or to delineate a water well protection area for a
water supply. In this Chapter we present the mathematical model and study its numerical
discretization in a two-dimensional case through Mixed Hybrid Finite Element scheme and
a Time Splitting technique. Finally we consider some applications to Elder’s problem [53]
- a test case from the literature - and to the realistic case of the Lake Karachai.

5.1 The mathematical model

The mathematical model of density-dependent flow and transport in groundwater can be
expressed in terms of an equivalent freshwater head h, defined as [1, 19]

h = ψ + z

where ψ = p/(ρ0g) is the equivalent freshwater pressure head, p is the pressure, ρ0 is the
freshwater density, g is the gravitational constant, and z is the vertical coordinate directed
upward. The density ρ of the saltwater solution is written in terms of the reference density
ρ0 and the normalized (actual divided by maximum) salt concentration c:

ρ = ρ0(1 + εc) (5.1)

where ε = (ρs−ρ0)/ρ0 is the density ratio, tipically� 1, and ρs is the density of the solution
at c = 1, and may represent, for instance, the density of seawater, or of the solution nearest
a surface salt mound or around an underground saline diapir. The dynamic viscosity µ of
the saltwater mixture is also expressed as a function of c and of the reference viscosity µ0
as

µ = µ0(1 + ε
′c) (5.2)

where ε′ = (µs−µ0)/µ0 is the viscosity ratio and µs is the viscosity of the solution at c = 1.
With these definitions, the coupled system of variably saturated flow and miscible salt
transport equations is [24]:

σ
∂ψ

∂t
= ~∇ · [Ks

1 + εc

1 + ε′c
Kr(~∇ψ + (1 + εc)ηz)]

−φSwε
∂c

∂t
+

ρ

ρ0
q∗ + q (5.3a)

~v = −Ks
1 + εc

1 + ε′c
Kr(~∇ψ + (1 + εc)ηz) (5.3b)

φ
∂Swc

∂t
= ~∇ · (D~∇c)− ~∇ · (c~v) + qc∗ + f (5.3c)

where Ks is the saturated hydraulic conductivity tensor at the reference density, Kr(ψ)
is the relative conductivity, ηz is a vector equal to zero in its x components and 1 in its
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z component, σ(ψ, c) is the general storage term or overall storage coefficient, t is time,
φ is the porosity, Sw(ψ) is the water saturation, q

∗ is the injected and q the extracted
volumetric flow rate, ~v is the Darcy velocity vector, D is the dispersion tensor, c∗ is the
normalized concentration of salt in the injected/extracted fluid, and f is the volumetric
rate of injected (positive)/ extracted (negative) solute that does not affect the velocity
field.

In the following, we will consider the case with Sw ≡ 1 and Kr ≡ 1, that is the fully
saturated case.

Initial conditions and Dirichlet, Neumann, or Cauchy boundary conditions are
added to complete the mathematical formulation of the flow and transport problem (5.3).
For the flow equation (5.3a), these take the form

ψ(~x, 0) = ψ0(~x) (5.4a)

ψ(~x, t) = ψP (~x, t) on Γ1 (5.4b)

~v · ~n = −qN(~x, t) on Γ2 (5.4c)

where ~x = (x, z)T is the Cartesian spatial coordinate vector, ψ0 is the pressure head at
time 0, ψP is the prescribed pressure head (Dirichlet conditions) on boundary Γ1, ~n is the
outward normal unit vector, and qN is the prescribed flux (Neumann condition) across
boundary Γ2. We use the sign convention of qN positive for an inward flux and negative
for an outward flux, consistent with the convention used for q and f in system (5.3).

For the transport equation (5.3c), the initial and boundary conditions are

c(~x, 0) = c0(~x) (5.5a)

c(~x, t) = cP (~x, t) on Γ3 (5.5b)

D~∇c · ~n = qD(~x, t) on Γ4 (5.5c)

(~vc−D~∇c) · ~n = −qC(~x, t) on Γ5 (5.5d)

where c0 is the initial concentration, cP is the prescribed concentration (Dirichlet condition)
on boundary Γ3, qD is the prescribed dispersive flux (Neumann condition) across boundary
Γ4, and qC is the prescribed total flux of solute (Cauchy condition) across boundary Γ5.
The sign convention for qD and qC is the same as for qN , q and f .

5.2 About coupling and nonlinearity

Coupling in system (5.3) is due to the concentration terms in the flow equation (5.3a) and
the head terms that appear in the transport equation (5.3c) via the Darcy velocities. In
the simpler case of non-density-dependent flow and transport (that is ε = 0), the system
is coupled only through the head terms in the transport equation. In this case there is
physical coupling, but mathematically the system can be reduced (decoupled) and solved
sequentially, first the flow and then the transport equation, without iteration. For our
density-dependent case, the system is irreducible and any sequential solution procedure
requires iteration.

The nonlinearity of the coupled model (5.3) is due to the dependence of solution
density on concentration that arises from relationship (5.1). For the flow equation (5.3a),
the saturated conductivity (Ks(1 + εc)/(1 + ε

′c)), total head, and time derivative terms
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are affected. As a consequence of the dependence on concentration in the flow equation,
the transport equation (5.3c) is also nonlinear, in its convective and dispersive flux terms.
When the density variations become larger than 3-4 %, flow and transport begin to be
strongly coupled and the problem becomes increasingly nonlinear [41, 44].

5.3 Numerical Discretization

The solution of the discretized system of equations is usually addressed with an iterative
Picard-like scheme by which the problem is decoupled by first solving the flow equation,
then calculating the velocity field, and finally solving the transport equation. This three-
step sequence is repeated until convergence. A difficulty for the successful application of
the above procedure is the requirement that accurate velocity fields be obtained from the
solution of the flow equation. Another problem that may influence the convergence of
the Picard method is oscillatory behavior of the solution when the transport equation is
advection dominated.

Several techniques have been used to solve numerically the coupled flow and trans-
port problem (5.3). In [23, 24] a Finite Element (FE) discretization for the flow equation is
joined with an analogous development for the transport equation. In [18] it has been shown
that linear Galerkin finite element discretizations of the groundwater flow equation may
violate the positive transmissibility property. This property ensures that the discrete flux
is in the opposite direction of the head gradient. Violation of this condition means that,
locally, nonphysical discrete fluxes can be generated, determining unacceptable approxi-
mation errors. This happens also when using the Galerkin approach in three-dimensional
triangulations. To avoid this problem, a modification of the three-dimensional Galerkin
scheme through a scheme called Orthogonal Subdomain Collocation is proposed in [43]. A
more accurate approach to this problem in both two- and three-dimensional triangulations
is given by Mixed Hybrid Finite Element (MHFE) method for solving flow, and Finite
Volume scheme for solving transport equation [3, 15].

To solve the transport equation we apply the time-splitting technique developed
in Chapter 3. The combination of these two approaches ensures high accuracy in both
velocity and concentration fields, thus warranting the best possible convergence properties
in the Picard iteration used to resolve coupling and nonlinearities.

5.3.1 MHFE method for flow

The MHFE formulation applied to the discretization of the flow equation is similar to the
development presented in Chapter 3. Given the triangulation Tl, l = 1, . . . ,m, the time
step ∆t on the time interval

[

tk, tk+1
]

, discretization of equations (5.3a-5.3b) by MHFE
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yields:

∫

Tl

K−1l ~vl · ~wil d∆−
∫

Tl

ψ~∇ · ~wil d∆ +
∫

∂Tl

λ~wil · ~nl dΓ = −
∫

Tl

(1 + εc)ηz · ~wil d∆

(5.6a)
∫

Tl

σl d∆
ψk+1l

∆t
+

∫

Tl

~∇ · ~vl d∆ =

∫

Tl

σl d∆
ψkl
∆t
+

∫

Tl

fl d∆

(5.6b)
∫

ej

~vl · ~nl dΓ +
∫

ej

~vr · ~nr dΓ = 0 if ej ∈ Tl ∩ Tr (5.6c)
∫

ej

~vl · ~nl dΓ = −qN (5.6d)

if ej ∈ Γ2 ∩ Tl
λj = ψP if ej ∈ Γ1 (5.6e)

where i = 1, 2, 3, l = 1, . . . ,m, j = 1, . . . , n, n being the number of edges, while the quan-

tities with subscript l are defined over element Tl. Matrix K is given by K = Ks
1 + εc

1 + ε′c
Kr

while f = −φSwε
∂c

∂t
+
ρ

ρ0
q∗ + q. The partial derivative

∂c

∂t
is approximated by the backward

Euler scheme.

In the above system, equation (5.6a) is the MHFE discretization of the mass con-
servation equation (5.3b); equation (5.6b) represents the discretized version of (5.3a);
equation (5.6c) guarantees continuity of the normal flux across interelement edges, while
equations (5.6d-5.6e) are the explicitly imposed Neumann and Dirichlet boundary condi-
tions, respectively.

By considering a weighted scheme for the time quadrature with weighting parameter θ =
0.5 (Crank-Nicolson) or θ = 1 (Euler), (pk+θ = θp(·, tk+1) + (1− θ)p(·, tk) = θpk+1 + (1−
θ)pk+1), the final hybrid formulation can be written in matrix notation as:





A −B C
BT D′ 0
CT 0 0









vk+θ

ψk+θ

λk+θ



 =





g1
g2 + D̃ψ

k

g3



 (5.7)

where A = diag[A1, . . . , Am], B = diag[B1, . . . , Bm] and

Al = (aik) =

∫

Tl

K−1l ~wil · ~wkl d∆ Bl = (bi) =

∫

Tl

~∇ · ~wil d∆

C = (crj) =

∫

∂Tl

µj ~wil · ~nl dΓ v = (vr) = vil

g1 = (g1l) =

∫

Tl

(1 + εc)ηz · ~wil d∆ g2 = (g2l) =

∫

Tl

fl d∆.

In the above equations i, k = 1, 2, 3, j = 1, . . . , n, r = 3(l − 1) + i and ψ = (ψl), λ = (λj),
and g3 = (−qNj) where −qNj assumes a non vanishing value only if there is a Neumann
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condition on a boundary edge ej. Setting D
k = diag[dk1, . . . , d

k
m] with d

k
l =

∫

Tl

σkl d∆/∆t,

then D′ =
Dk+1

θ
and D̃ = D′ −Dk+1 +Dk. If dkl is not dependent on time, then D

′ = D̃.

The velocity field vk+θ is obtained from the upper system block:

vk+θ = A−1(Bψk+θ − Cλk+θ + g1). (5.8)

Substitution of this expression into the remaining equations yields a reduced system with
ψk+θ and λk+θ as unknowns:

(

D′ +BTA−1B −BTA−1C
CTA−1B −CTA−1C

)(

ψk+θ

λk+θ

)

=

(

−BTA−1g1 + g2 + D̃ψ
k

−CTA−1g1 + g3

)

. (5.9)

Setting H = D′ +BTA−1B and S = A−1B, the pressure head is given by:

ψk+θ = H−1(STCλk+θ + STg1 + g2 + D̃ψ
k), (5.10)

Finally, setting M = A−1 − SH−1ST , the final system of equations is obtained:

CTMCλk+θ = CTMg1 + C
TSH−1(g2 + D̃ψ

k)− g3, (5.11)

from which we get λk+θ. Once λk+θ is calculated, ψk+θ and vk+θ can be evaluated using
equations (5.10) and (5.8).

Note that the matrix CTMC depends on the unknown values of concentration ck+1

and thus system (5.11) is nonlinear. We use a Picard iterative approach to linearization,
i.e. in solving (5.11) for λk+1,r+1 where r is the iteration counter, we set ck+1 = ck+1,r.
The linearized system is thus symmetric and positive definite and can be solved efficiently
by the Preconditioned Conjugate Gradient method.

5.3.2 Time-splitting for transport

The time-splitting technique presented in the previous Chapter is applied to solve the trans-
port equation. Equation (5.3c) is splitted into two separate partial differential equations

containing one the dispersive flux −D ~∇c plus the terms qc∗ + f , and the other containing
the advective flux c~v. We consider the first order accurate in time and second order accu-
rate in space version and use na > 1. The advective time step is determined by the CFL
constraint while the dispersive time step is determined by accuracy considerations.

5.3.3 The Picard method

The Picard iteration for the solution of the nonlinearly coupled system of equations pro-
ceeds as follows. To advance in time from tk to tk+1, at the (r + 1)-st iteration the flow
equation is first solved for ψk+1,r+1 and vk+1,r+1, freezing the values of the concentration,
ck+1,r, at the previous iteration. Employing these updated values of velocity and pressure
head, the transport equation is then solved for ck+1,r+1. This procedure is repeated until
convergence is achieved. The algorithm can be expressed mathematically in the following
way:
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• flow equation:
CTMCλk+θ,r+1 = CTMg1 + C

TSH−1(g2 + D̃ψ
k)− g3

ψk+θ,r+1 = H−1(STCλk+θ,r+1 + STg1 + g2 + D̃ψ
k)

vk+θ,r+1 = A−1(Bψk+θ,r+1 − Cλk+θ,r+1 + g1)
where dependence on concentration is implicit;

• transport equation:
ĉk+1,r+1 = ck +∆ta

[

La(c
k)
]

ck+1,r+1 = ĉk+1,r+1 +∆td
[

Ld(c
k+1,r+1)

]

.

Since the advection equation is solved explicitly and depends only on the values at time
tk, if the dispersion flux is null in the transport equation, we would reach convergence in
just one iteration. In the general case, convergence is achieved when:

‖ψk+1,r+1 −ψk+1,r‖2 ≤ tolψ
‖ck+1,r+1 − ck+1,r‖2 ≤ tolc

(5.12)

where tolψ and tolc are two fixed tolerances.
In the applications, the time step size is adaptively adjusted according to the be-

havior of the previous iteration. The simulation begins with a time step size of ∆t0 and
an initial guess given by input values or by the values calculated at the previous time step.
The size of the time step has a direct effect on the convergence of the iteration because of
its influence on the quality of the initial solution estimate. After the convergence of the
Picard iteration, the time step size for the next time step is increased by a factor of ∆tincr
(to a maximum size of ∆tmax) if convergence was achieved in fewer than maxit1 iterations;
it is left unchanged if convergence was reached between maxit1 and maxit2 iterations; and
it is decreased by a factor of ∆tred (to a minimum of ∆tmin) if convergence required more
than maxit2 iterations. If convergence is not achieved (that is relations (5.12) do not hold
within a maximum number of iterations, maxit), the time step is repeated (we back-step)
using a reduced time step size (by ∆tred, unless the time step cannot be reduced any fur-
ther, in which case we set ∆t = ∆tmin). The values of the various ∆t’s and maxit’s are
chosen empirically.

5.4 Notes on the definition of flow and transport coefficients

To be able to solve correctly the coupled flow and transport problem, all the coefficients in
equations (5.3) must be specified. Recall that the flow and velocity equations (5.3a- 5.3b)
take on the form:

σ
∂ψ

∂t
= ~∇ · [Ks

1 + εc

1 + ε′c
Kr(~∇ψ + (1 + εc)ηz)]− φSwε

∂c

∂t
+

ρ

ρ0
q∗ + q

~v = −Ks
1 + εc

1 + ε′c
Kr(~∇ψ + (1 + εc)ηz)

We have defined only ε, ε′, ρ, ρ0 and the function ηz. The definition of the remaining
coefficients is taken from [4]. The general storage term or overall storage coefficient, σ is
given by:

σ = Ss(1 + εc)
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where Ss is the elastic storage coefficient. (In the general case of variably saturated flow and

transport equations, we have σ = SwSs(1 + εc) + φρ0(1 + εc)
∂Sw
∂ρ
. Now we are considering

Sw = 1.) The saturated hydraulic conductivity tensor Ks is defined by:

Ks =
ρ0gk

µ

where k is the intrinsic permeability tensor of the porous medium. Kr, the relative con-
ductivity, is constant and equal to 1 in our applications. In general it is a function that
depends on the pressure head ψ. The porosity φ and the volumetric flow rates q∗ and q
are constant or functions that do not depend on pressure or concentration.

The transport equation is given by

φ
∂Swc

∂t
= ~∇ · (D~∇c)− ~∇ · (c~v) + qc∗ + f

where the dispersion tensor D is given by [1]:

Dij = αT |~v|δij + (αL − αT )
vivj
|~v| + φSwD0τδij i, j = x, z

with αL and αT being the longitudinal and transverse dispersivity coefficients, respectively,
|~v| =

√

v2x + v
2
z , δij the Kronecker delta, D0 the molecular diffusion coefficient, and τ the

tortuosity (τ = 1 is usually assumed). Nonzero off-diagonal coefficients in D are avoided
by aligning the local coordinate system of each triangle to the principal axis of anisotropy.
To this aim, we consider a new coordinate system, aligned with the direction of Darcy’s
velocity, so that x′ = (vxx − vzz)/|~v| and z′ = (vzx − vxz)/|~v|. Then the elements of the
dispersion tensor become

Dxx = αL|~v|+ φSwD0τ
Dzz = αT |~v|+ φSwD0τ
Dxz = Dzx = 0

5.5 Application to Elder’s problem

Our first example is a classical natural convection problem used to validate the coupled
flow and transport solvers. It was suggested in the literature [60] as an exercise to test the
accuracy of models in representing fluid flow driven purely by density differences. Elder’s
problem is concerned with the movement of a solute moving in a closed rectangular box
by diffusion [53].

A source of solute with constant unit value is applied at the top of a closed rectan-
gular box while concentration at the base is maintained at zero. The pressure is initially
hydrostatic, that is, by assuming a uniform surface elevation of the top layer, equal to zmax,
the inital pressure head is ψ(~x, 0) = zmax − z. The two upper corners of the box are held
at zero pressure head. The solute enters the pure water initially by diffusion, increases its
density and a circulation process begins. The motion develops as a set of eddies forming at
the two ends of the source, because of the solute density. Small eddies of reverse circulation
are associated with the end eddies, followed by a further set of eddies growing near the
ends. This process continues in time until the end eddies merge into single large eddies.
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Table 5.1: Parameters for Elder’s problem.

Domain Rectangular section of 600 m × 150 m
Source location Centered on the upper boundary

at 150 m ≤ x ≤ 450 m
Permeability:
Ksx 0.410654 m/d
Ksz 0.410654 m/d
Elastic storage Ss 9.8e-3
Density ratio, ε 0.2
Viscosity ratio, ε′ 0
Porosity φ 0.1
Dispersivity αL, αT 0 m
Diffusion coefficient D0 0.308016 m2/d
BCs for flow No flow

Zero pressure head at the two upper corners
BCs for mass transport c = 0 along the base and c = 1 at the source.

Zero concentration gradient elsewhere
IC for pressure head Hydrostatic
IC for concentration c = 0
Grid characteristics 2000 triangles (100 × 20) and 1070 edges
Horizontal nodal spacing, ∆x 12 m
Vertical nodal spacing, ∆z 7.5 m
Time increment, ∆t 30 d
Convergence criteria, tolψ, tolc 1.e-3

The parameters used in our simulation are given in Table 5.1, where we use the no-
tation BCs to represent Boundary Conditions and IC to represent Initial Condition. The
600 m × 150 m domain shown in Figure 5.1 is discretized with a triangular grid of 2000
elements. Figures 5.2 and 5.3 show the results obtained for t = 1, 2, 3, and 4 years.
The solute transport solution agrees very well with the results of the literature in [53, 60].
The results indicate that the proposed approach is accurate and reliable, does not suffer
from numerical oscillation and does not introduce large amounts of numerical diffusion, as
typically done by more conventional upwind discretizations. Also, the presence of unsym-
metric meshes does not dramatically influence the solution, as reported in the literature
for other types of discretization approaches.

5.6 Application to the Lake Karachai problem

Existing three dimensional numerical models and codes developed for the simulation of
groundwater flow and contaminant transport are extended and enhanced by the partners
of the RaCoS project (see Chapter 1) to perform simulations at the Lake Karachai. The
procedure here developed to solve density dependent flow and transport in groundwater,
being a highly accurate two dimensional simulation model, is deemed necessary to verify
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Figure 5.1: Voss and Souza definition of Elder’s problem.

the results obtained by the three dimensional codes. In particular, it is important to assess
how the large amount of numerical diffusion necessarily introduced by the three dimensional
codes to maintain stability, and possible appearance of negative concentration values affect
the prediction of the radionuclide movement. In fact these numerical phenomena may
alter the adsorption/desorption pattern of the solute and change the speed at which the
contaminant plume moves [50].

The combination of the MHFE method for flow and of the time-splitting technique
for transport can be now applied to determine the extent and the character of the contami-
nant plume at the Lake Karachai site in two dimensional simulations, to predict the behav-
ior of the contaminant plume under different scenarios and to verify the results obtained
by three dimensional codes. A vertical section of the complex Karachai site is considered
in Figure 5.4. The Lake Karachai is 400 m long and is almost centered within the domain
of interest. According to the data acquired by field measurements, three main zones have
been idientified with different hydraulic conductivity values. In addition, since precipita-
tion is the primary recharge mechanism for the underlying aquifer, prescribed Neumann
conditions have been considered as boundary conditions for pressure. The bottom and the
left side of the domain are assumed to be impermeable. The test cases reported next are
taken from the RaCoS project yearly reports and are considered to be representative of
the real situation [49, 50, 21, 32, 20, 31].

5.6.1 Case 1

In this first case, we consider a schematic domain of the Lake Karachai. A rectangular
section of size 500 m × 100 m is considered in Figure 5.5. The source simulating the Lake
is located at the top of the domain at 225 m ≤ x ≤ 260 m (face BC). The boundary
conditions for the flow equation are as follows. Zero flux is imposed on the vertical faces
DE and EF. Faces AB and CD are subjected to a Neumann flux equal to qN= 2.16e-4
m2/d, while at the source BC qN = 3.024e-3 m

2/d is prescribed. On side FA hydrostatic
conditions with pressure head ψ = 0 at the top are assumed. For the transport equation
we set at the source BC Dirichlet boundary conditions c = 1 and zero dispersive flux
elsewhere.
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Figure 5.2: Concentration contours for Elder’s problem at 360 days (top) and 720 days
(bottom).
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Figure 5.3: Concentration contours for Elder’s problem at 3 years (top) and 4 years
(bottom).
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Figure 5.5: Domain for the Case 1.
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According to data acquired by field measurement, we consider three different perme-
ability zones, (Figure 5.5), with a more permeable central layer (zone 2). The parameters
used in this simulation are summarized in Table 5.2.

The distributed water infiltration at the surface together with the hydrostatic con-
dition at the left side of the domain create a regional flow from left to right.

Figures 5.6, 5.7 and 5.8 display the contaminant plume as calculated with the pro-
posed approach after 500, 1000, 2000, 3000, 4000, and 5000 days. At the beginning the
plume moves symmetrically downward driven by gravity. It widens when it encounters
the zone with larger permeability, and tends to deposit at the bottom of the aquifer. At
t=2000 days (Figure 5.7), the contaminant tilts towards the right in accordance to the
regional flow.

5.6.2 Case 2

This simulation, simpler than the previous one, considers a rectangular domain of 1500 m
× 100 m, discretized with a triangular grid of 600 elements. The test case tries to assess
the effects that physical instabilities may have on a long-term simulation (t ≥ 2000 days).
It is expected that after a period of time the fingering due to density differences will not
affect the shape of the contamination plume. The source of contaminant (the lake) with
constant unit value is applied in the left upper area of the domain, at 0 m ≤ x ≤ 300 m
(see Figure 5.9). At the source there is an incoming water flux qN= 5.e-2 m

2/d. On the
right upper corner a Dirichlet condition of prescribed pressure head ψ=150 m is fixed to
simulate the presence of a river. Initial pressure and concentrations are zero. The domain
is assumed to be homogeneous. The parameters used are summarized in Table 5.3.

Figures 5.10 and 5.11 display the concentration contours at 500, 1000, 1500, and
2000 days. The instabilities mentioned above are clearly visible at the early times but are
almost completely disappeared already at t=1000 days. The transport of the contaminant
from the top to the bottom of the aquifer is simulated accurately and does not reveal overly
dispersive concentration fronts, even through we are using a very coarse grid. To obtain
similar results with standard FEM a much more refined mesh needs to be employed.

5.6.3 Case 3

The final simulation considers a vertical cross section comprising the Lake Karachai (CD),
and the rivers Myshelyak (B) and Techa (E) (Figure 5.12). A domain of 12000 m of length
and 85 m of depth is discretized with 19200 triangles. The Lake Karachai is located at
6600 m ≤ x ≤ 7000 m. Furthermore, at points B and E at the top of the domain (x= 3300
m and x=12000 m), the pressure head is fixed to simulate the presence of the Myshelyak
and Techa river, respectively. The domain is assumed to be heterogeneous and the three
main layers of test case 1 are used. The parameters for the simulation are reported in
Table 5.4.

The initial conditions are given by the steady state flow distribution, to ensure a
stable initial flow for the coupled flow and transport problem. Figures 5.13, 5.14 and 5.15
show the concentration contours after 1, 2, 4, 8, 10, and 15 years, respectively. The solution
displays a very tight dispersion front, reflecting the ability of the proposed approach to
minimize numerical diffusion. The oscillations that are visible in the middle of the plume
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Table 5.2: Parameters for the Case 1.

Domain Rectangular section of 500m × 100 m
Source location Centered on the upper boundary

at 225 m ≤ x ≤ 260 m
Permeability 3 zones
zone 1 (70 ≤ z ≤ 100)
Ksx 0.30 m/d
Ksz 0.05 m/d
zone 2 (40 ≤ z ≤ 70)
Ksx 1. m/d
Ksz 1. m/d
zone 3 (0 ≤ z ≤ 40)
Ksx 0.1 m/d
Ksz 0.05 m/d
Elastic storage Ss 1.e-5 m−1

Density ratio, ε 0.07
Viscosity ratio, ε′ 0
Porosity φ 0.025
Dispersivity αL 5 m
Dispersivity αT 1 m
Diffusion coefficient D0 0 m2/d
BCs for flow qN= 2.16e-4 m

2/d on faces AB ad CD
qN = 3.024e-3 m

2/d at the source
hydrostatic frewshwater head with ψ=0 m
at the top on side FA
zero flux elsewhere

BCs for mass transport c = 1 at the source
no dispersive flux elsewhere

IC for pressure head Hydrostatic
IC for concentration c = 0
Grid characteristics 4000 triangles (200 × 20) and 2021 edges
Horizontal nodal spacing, ∆x 5 m
Vertical nodal spacing, ∆z 5 m
Time increment, ∆t 30 d
Convergence criteria, tolψ, tolc 1.e-3

102



0.1

0.3

0.
5

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100

 

0.1

0.
3

0.
5

0 50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100

 

Figure 5.6: Case 1: concentration contours for the Lake Karachai problem at 500 days
(top) and 1000 days (bottom).
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Figure 5.7: Case 1: concentration contours for the Lake Karachai problem at 2000 days
(top) and 3000 days (bottom).
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Figure 5.8: Case 1: concentration contours for the Lake Karachai problem at 4000 days
(top) and 5000 days (bottom).
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Figure 5.9: Domain for the Case 2.

Table 5.3: Parameters for the Case 2.

Domain Rectangular section of 1500m × 100 m
Source location Centered on the upper boundary

at 0 m ≤ x ≤ 300 m
Permeability
Ksx 1 m/d
Ksz 1 m/d
Elastic storage Ss 1.e-5 m−1

Density ratio, ε 0.07
Viscosity ratio, ε′ 0
Porosity φ 0.010
Dispersivity αL 50 m
Dispersivity αT 10 m
Diffusion coefficient D0 0 m2/d
BCs for flow qN= 5.e-2 m

2/d at the source
frewshwater head ψ=150 m on the right upper corner
zero flux elsewhere

BCs for mass transport c = 1 at the source
zero dispersive flux elsewhere

IC for pressure head ψ = 0
IC for concentration c = 0
Grid characteristics 600 triangles (60 × 10) and 341 edges
Horizontal nodal spacing, ∆x 50 m
Vertical nodal spacing, ∆z 10 m
Time increment, ∆t 10 d
Convergence criteria, tolψ, tolc 1.e-4
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Figure 5.10: Case 2: concentration contours at 500 days (top) and 1000 days (bottom).
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Figure 5.11: Case 2: concentration contours at 1500 days (top) and 2000 days (bottom).
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Figure 5.12: Domain for the Case 3.

are considered to by physical instabilities and disappear at t=15 years. The results are
in very good agreement with the experimental observations. Comparison with the results
obtained by the FEM model seems to indicate that the overly dispersive front of the latter
does not dramatically influence the global qualitative behavior of the plume. However a
quantitative assessment of the contaminant flux that may be discharged in the Techa and
Myshelyak rivers needs to be assessed more accurately than it is possible with the FE
approach.
Future work in this direction will be performed in portions of the domain surrounding the
two rivers. Starting with initial and boundary conditions given by the three dimensional
FE model, the amount of contaminant discharged into the rivers will be calculated using
the approach proposed in this Thesis.
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Table 5.4: Parameters for the Case 3.

Domain Rectangular section of 12000 m × 85 m
Source location Centered on the upper boundary

at 6600 m ≤ x ≤ 7000 m
Sink location at x = 3300 m
Permeability 3 zones
zone 1 (75 ≤ z ≤ 85)
Ksx 0.30 m/d
Ksz 0.05 m/d
zone 2 (40 ≤ z ≤ 75)
Ksx 1. m/d
Ksz 1. m/d
zone 3 (0 ≤ z ≤ 40)
Ksx 0.1 m/d
Ksz 0.05 m/d
Elastic storage Ss 1.e-2 m−1

Density ratio, ε 0.035
Viscosity ratio, ε′ 0
Porosity φ 0.025
Dispersivity αL 10 m
Dispersivity αT 1 m
Diffusion coefficient D0 0 m2/d
BCs for flow qN= 8.64e-4 m

2/d on the faces AB, BC, DE
qN = 1.21e-2 m

2/d at the source
frewshwater head ψ=92 m at point B
frewshwater head ψ=85 m at point E
zero flux elsewhere

BCs for mass transport c = 1 at the source
c = 0 elsewhere at top of the domain

IC for pressure head from a steady state flow simulation
IC for concentration c = 0
Grid characteristics 19200 triangles (1200 × 16) and 10217 edges
Horizontal nodal spacing, ∆x 20 m
Vertical nodal spacing, ∆z 5.3125 m
Time increment, ∆t 2 d
Convergence criteria, tolψ, tolc 1.e-3
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Figure 5.13: Case 3: concentration contours at 1 (top) and 2 years (bottom).
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Figure 5.14: Case 3: concentration contours at 4 (top) and 8 years (bottom).
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Figure 5.15: Case 3: concentration contours at 10 (top) and 15 years (bottom).
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A About norms and convergence rates

If a numerical scheme has order of convergence p, then the error |e`| (for simplicity we
consider the dependence on gridsize h) can be written as |e`| = Chp` and |e`+1| = Ch

p
`+1,

where h`+1 =
h`
2
. Therefore

|e`|
|e`+1|

=
hp`
hp`+1

=
hp`
hp`
2p

= 2p.

and the order of convergence of the scheme is calculated numerically as:

log
|e`|
|e`+1|
log 2

= p (1.1)

where |e`| and |e`+1| represent the norms of the error at two consecutively refined grid
levels ` and `+ 1.

In all our simulations we have used L1 and L2 relative norms, by comparing the
results obtained by these two norms. Thus we have considered the following formulae:

• L1 relative norm

|e`| =

m
∑

l=1

|c(xl, tk)− ckl |

m
∑

l=1

|c(xl, tk)|
;

• L2 relative norm

|e`| =

√

√

√

√

m
∑

l=1

(c(xl, tk)− ckl )2

√

√

√

√

m
∑

l=1

c(xl, t
k)2

,

where c(xl, t
k) is the analytical solution on the centroid of triangle Tl at time t

k and ckl is
the corresponding numerical solution.

The corresponding absolute norms are:

• L1 absolute norm
|e`| =

m
∑

l=1

|(c(xl, tk)− ckl )||Tl|;

• L2 absolute norm

|e`| =

√

√

√

√

m
∑

l=1

(c(xl, tk)− ckl )2|Tl|,

where |Tl| is the area of Tl.
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A.1 In presence of fixed domain

Using absolute or relative norms to compute errors and, consequently, the rates of conver-
gence, it is irrelevant when the domain does not change shape. As an example, we consider
again the advection equation solved with Finite Volume scheme

ut + ~∇ · (~vu) = 0,

with ~v = (−1, 0), initial condition

u0(x, y) = sin (2πx) sin (4πy/
√
3),

and a square domain [0, 1]× [0, 1] discretized using right triangular elements. The coarsest
mesh (` = 1) is characterized by 200 triangles and 121 edges, while the finest level (` = 4)
is characterized by 12800 triangles and 6561 edges. Therefore, at each level, the area of
the domain does not change. To advance in time we use Euler, Midpoint and Runge-Kutta
scheme, respectively. In Table A.1 we show the error norms and convergence rates obtained
with both absolute and relative norms at time t = 0.1 s. Since the L1 norm is bounded
above by the L2 norm, there is a difference in the convergence rate (L1 rate is greater than
the L2 rate), but there is no difference between absolute or relative norms.

A.2 In presence of shrinking domain

If we consider a case of shrinking domain, the situation changes completely.
Let us consider the simple diffusive problem solved by the MHFE method,

ct −Dcxx = 0,

with appropriate initial and boundary conditions so that its analytical solution is given by

c(x, t) = erfc
x

2
√
Dt

.

Table A.2 reports the values obtained in L1 and L2 absolute and relative norms, by using
Euler or Crank-Nicolson rule in time, respectively.

From the theory, we know that the scheme is of second order accuracy in the
centroids of the triangles and of first or second order accuracy in time, if we use Euler
or Crank-Nicolson schemes, respectively. Thus, halving at each level the gridsizes of the
spatial and temporal meshes, we expect first or second global order of accuracy.

From Table A.2, the rates of convergence follow the theory when computed from the
relative errors (there is no difference if we consider L1 or L2 relative norms), but not the
absolute norms. The rates of convergence are greater than the expected once by a factor
one in L1 absolute norm and of 0.5 in L2 absolute norm. This behavior is due to the fact
that we are considering a shrinking domain at each level. In fact, since we are considering a
one-dimensional example in a two-dimensional scheme, the height of the domain is always
halved in passing from a coarser to the next finer level, in such a way that the shape of
the triangles at the different levels is preserved. Therefore, the coarsest mesh is defined on
the rectangle [0, 1]× [0, 0.1] and is characterized by 300 triangles and 204 edges, while the
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Table A.1: Convergence rates in the case of fixed domain.

Eu Mp RK
` L1 abs rate L1 abs rate L1 abs rate
1 4.66e-2 4.69e-2 4.62e-2
2 1.44e-2 1.69 1.42e-2 1.72 1.46e-2 1.66
3 5.06e-3 1.51 4.92e-3 1.53 4.99e-3 1.55
4 1.71e-3 1.56 1.62e-3 1.60 1.60e-3 1.64

l.s.a. rate l.s.a. rate l.s.a. rate
1.58 1.61 1.61

` L1 rel rate L1 rel rate L1 rel rate
1 1.20e-1 1.20e-1 1.19e-1
2 3.70e-2 1.70 3.64e-2 1.72 3.64e-2 1.66
3 1.30e-2 1.51 1.26e-2 1.53 1.28e-2 1.55
4 4.40e-3 1.56 4.18e-3 1.59 4.12e-3 1.63

l.s.a. rate l.s.a. rate l.s.a. rate
1.58 1.61 1.61

` L2 abs rate L2 abs rate L2 abs rate
1 5.67e-2 5.66e-2 5.61e-2
2 1.89e-2 1.58 1.84e-2 1.62 1.89e-2 1.57
3 7.21e-3 1.39 6.97e-3 1.40 7.12e-3 1.41
4 2.80e-3 1.36 2.66e-3 1.39 2.62e-3 1.44

l.s.a. rate l.s.a. rate l.s.a. rate
1.44 1.46 1.47

` L2 rel rate L2 rel rate L2 rel rate
1 1.17e-1 1.17e-1 1.16e-1
2 3.90e-2 1.58 3.80e-2 1.62 3.81e-2 1.56
3 1.49e-2 1.39 1.44e-2 1.40 1.47e-2 1.41
4 5.79e-3 1.36 5.50e-3 1.39 5.41e-3 1.44

l.s.a. rate l.s.a. rate l.s.a. rate
1.44 1.46 1.47
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finest level (` = 5) is defined on the rectangle [0, 1] × [0, 6.25× 10−3] and is characterized
by 4800 triangles and 3204 edges.

When we compute errors in the L1 absolute norm, |e`|/|e`+1| is given by

|e`|
|e`+1|

=
hp|Ω|

(h/2)p|Ω/2| .

where |Ω| is the area of the domain, halved in the next finer level. Thus,

|e`|
|e`+1|

= 2p2

so that

log
|e`|
|e`+1|

/ log 2 = p+ 1.

We do not obtain p directly! In the case of L2 absolute norm, we have

|e`|
|e`+1|

=
hp
√

|Ω|
(h/2)p

√

|Ω/2|
.

and
|e`|
|e`+1|

= 2p
√
2.

Therefore

log
|e`|
|e`+1|

/ log 2 = p+
1

2
.
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Table A.2: Convergence rates in the case of shrinking domain.

Eu CN
` L1 abs rate L1 abs rate
1 2.27e-5 1.53e-5
2 3.77e-6 2.59 1.90e-6 3.01
3 7.05e-7 2.42 2.38e-7 3.00
4 1.47e-7 2.26 3.00e-8 2.99
5 3.30e-8 2.15 3.84e-9 2.90

l.s.a. rate l.s.a. rate
2.35 2.99

` L1 rel rate L1 rel rate
1 1.42e-3 9.57e-4
2 4.73e-4 1.58 2.39e-4 2.00
3 1.77e-4 1.42 5.97e-5 2.00
4 7.35e-5 1.27 1.50e-5 1.99
5 3.31e-5 1.15 3.85e-6 1.96

l.s.a. rate l.s.a. rate
1.35 1.99

` L2 abs rate L2 abs rate
1 1.09e-4 7.36e-5
2 2.57e-5 2.08 1.30e-5 2.50
3 6.79e-6 1.92 2.29e-6 2.50
4 1.99e-6 1.77 4.05e-7 2.50
5 6.34e-7 1.65 7.19e-8 2.49

l.s.a. rate l.s.a. rate
1.85 2.50

` L2 rel rate L2 rel rate
1 1.13e-3 7.61e-4
2 3.76e-4 1.59 1.90e-4 2.00
3 1.40e-4 1.42 4.74e-5 2.00
4 5.84e-5 1.26 1.19e-5 1.99
5 2.62e-5 1.16 2.98e-6 2.00

l.s.a. rate l.s.a. rate
1.35 2.00
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B Groundwater modeling

Groundwater modeling may be defined, briefly, as the simulation of the current behavior
of an aquifer and the prediction of its future conditions. An exhaustive introduction and
analysis can be found, for example, in [1, 2]. In the following we give some rudimentary
concepts useful to better understand the coupled flow and transport equations.

• An aquifer is a geological formation which contains water and permits significant
amounts of water to move through it under ordinary field conditions. The word
aquifer comes from the latin words aqua and ferre, i.e., to bear water.

• That portion of the rock formation which is occupied by solid matter is called the
solid matrix. The remaing part is called the void space. The void space is occupied
by one (water) or two (water and air) fluid phases.

• Subsurface formations containing water may be divided vertically into two horizontal
zones, according to the relative proportion of the void space which is occupied by
water:

– zone of saturation: the entire void space is filled with water;

– unsaturated zone: the pores contain both gases and water.

The unsaturated zone is overlying the zone of saturation.

• A porous medium domain is said to be homogeneous with respect to its permeabil-
ity, if the latter is the same at all its point. Otherwise the domain is said to be
heterogeneous. If the permeability at a considered point is independent of direction,
the porous medium is isotropic at that point. Otherwise, the porous medium is
anisotropic.

B.1 Darcy’s law

In 1856, Henry Darcy investigated the flow of water in vertical homogeneous sand filters in
connection with the fountains of the city of Dijon. From his experiments, Darcy concluded
that the rate of flow (i.e. volume of water per unit time), Q, is:

1. proportional to the cross-sectional area, say A;

2. proportional to the difference in water level elevations in the inflow and exit reservoirs
of the filter, say (h1 − h2);

3. inversely proportional to the filter’s lenght, say L.

Therefore, the first form of Darcy’s law is:

Q =
KA(h1 − h2)

L
,
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where K is a constant. Darcy’s law extended to flow through an inclined homogeneous
porous medium column takes the form:

Q =
KA(h1 − h2)

L
,

where now h represents the piezometric head defined by h = ψ + z, as seen in Chapter 5,
with z the elevation of the point. The piezometric head expresses the sum of the potential

energy ad pressure energy, per unit weight of water, while
h1 − h2
L

is the hydraulic gradient.

Denoting this gradient by J and defining the specific discharge, v, as the volume of water
flowing per unit time through a unit cross-sectional area normal to the direction of flow,
we obtain

q = KJ,

where q = Q/A.
Let us consider a point along the column’s axis and a segment of the column of

length s along the column’s axis, on both sides of the point. Darcy’s law becomes:

qs = −K
∂h

∂s
≡ KJs Js ≡

∂h

∂s
.

This expression gives the component of the specific discharge in the direction s at any point
in a porous medium domain, given K and the spatial distribution of the piezometric head.
By considering the volumetric porosity φ, it can be shown that the average areal porosity
is equal to φ and, thus, the portion of the area A available to flows is φA. Accordingly,
the average velocity, v, of the flow through the column is given by

v =
Q

φA
=
q

φ
.

We are now able to generalize Darcy’s law when the flow is three-dimensional:

~q = K ~J = −K~∇h ~v = ~q/φ,

where ~v is the velocity vector, ~q is the specific discharge vector, ~J = −~∇h is the hydraulic
gradient.

B.2 Hydraulic conductivity

The coefficient of proportionality K appearing in Darcy’s law is the hydraulic conductivity
of the porous medium (it is the same Ks parameter that appears in the coupled flow and
transport equations). In an isotropic medium it may be defined as the specific discharge
per unit hydraulic gradient. It expresses the ease with which a fluid is transported through
the tortuous void space. It is therefore a coefficient that depends on both matrix and fluid
properties. The relevant properties are the density, ρ, and viscosity, µ. The relevant solid
matrix properties are mainly grain- (or pore-) size distribution, shape of grains (or pores),
tortuosity, specific surface, and porosity.
The hydraulic conductivity K may be expressed as

K =
kρg

µ
,

where g is the acceleration of gravity and where k - called the permeability of the porous
medium - depends solely on the properties of the solid matrix.

121



B.3 Moisture content and saturation

In unsaturated flow, the void space is partly filled by air and partly by water. Two state
variables may be used to define the relative quantity of water at a certain time at a point
in a porous medium domain:

θw =
volume of water
total volume

0 ≤ θw ≤ φ

Sw =
volume of water
volume of voids

0 ≤ Sw ≤ 1

θw is called the water (or moisture) content and Sw is the water saturation. In this way,
θw = φSw.

B.4 Molecular diffusion and mechanical dispersion

Molecular diffusion, caused by the random movement of molecules in a fluid, produces
an additional flux of tracer particles (at microscopic level) from regions of higher tracer
concentration to that of lower concentration. In addition to the role played at the micro-
scopic level by molecular diffusion in enhancing the transversal component of mechanical
dispersion, it produces a macroscopic flux of its own.

We refer to the spreading caused by the velocity at the microscopic level, enhanced
by molecular diffusion, as macroscopical or hydrodynamic dispersion.

The dispersion tensor D of transport equation, studied in Chapters 4 and 5, takes
into account for mechanical dispersion and molecular diffusion.
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1992.

[34] X.-D. Liu, A maximum principle satisfying modification of triangle based adaptive
stencils for the solution of scalar hyperbolic conservation laws, SIAM J. Num. Anal.,
30 (1993), pp. 701–716.

[35] A. Mazzia, L. Bergamaschi, and M. Putti, A time-splitting technique for
advection-dispersion equation in groundwater, J. Comput. Phys., 157 (2000), pp. 181–
198.

[36] , Triangular finite volume-mixed finite element discretization for the advection-
diffusion equation, in Large Scale Scientific Computations of Engineering and Envi-
ronmental Sciences, M. Griebel, S. Margenov, and P. Yalamov, eds., Braunschweig
(Ger), 2000, Vieweg, pp. 371–378.

[37] , A second order time-splitting technique for advection-dispersion equation on
unstructured grids, in Godunov Methods Theory and Applications, E. F. Toro, ed.,
vol. 1, New York, 2001, Academic/Plenum Publishers, pp. 603–610.

[38] M. Nakata, A. Weiser, and M. F. Wheeler, Some superconvergence results
for mixed finite element methods for elliptic problems on rectangular domains, in The
Mathematics of Finite Elements and Applications V, J. Whiteman, ed., London, 1985,
Academic Press.

[39] S. P. Neuman, A Eulerian-Lagrangian numerical scheme for the dispersion convec-
tion equation using conjugate space time grids, J. Comp. Phys., 41 (1981), pp. 270–294.

125



[40] S. Osher and S. Chakravarthy, High resolution schemes and the entropy condi-
tion, SIAM J. Num. Anal., 21(5) (1984), pp. 955 – 984.

[41] C. Paniconi and M. Putti, Modeling variably saturated flow problems using
Newton-type linearization methods, in Advanced Methods for Groundwater Pollution
Control, G. Gambolati and G. Verri, eds., CISM Courses and Lectures NO. .364,
Wien, New York, 1995, Springer-Verlag, pp. 45–64.

[42] R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow, Springer-
Verlag, New York, 1983.

[43] M. Putti and C. Cordes, Finite element approximation of the diffusion operator
on tetrahedra, SIAM J. Sci. Comput., 19 (1998), pp. 1154–1168.

[44] M. Putti and C. Paniconi, Finite element modeling of saltwater intrusion problems
with an application to an Italian coastal aquifer, in Advanced Methods for Groundwa-
ter Pollution Control, G. Gambolati and G. Verri, eds., CISM Courses and Lectures
NO. .364, Wien, New York, 1995, Springer-Verlag, pp. 65–84.

[45] M. Putti and C. Paniconi, Picard and Newton linearization for the coupled model
of saltwater intrusion in aquifers, Adv. Water Resources, 18 (1995), pp. 159–170.

[46] M. Putti, W. W.-G. Yeh, and W. A. Mulder, A triangular finite volume
approach with high resolution upwind terms for the solution of groundwater transport
equations, Water Resour. Res., 26 (1990), pp. 2865–2880.

[47] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential
Equations, vol. 23 of Springer Series in Computational Mathematics, Springer-Verlag,
Berlin, 1994.

[48] RaCoS, Radionuclide Contamination of Soils and Groundwater at the Lake Karachai
Waste Disposal Site (Russia) and the Chernobyl Accident Site (Ukraine): Field Analy-
sis and Modeling Study, Summary Description of the Joint Research Proposal, (1996).

[49] , Radionuclide Contamination of Soils and Groundwater at the Lake Karachai
Waste Disposal Site (Russia) and the Chernobyl Accident Site (Ukraine): Field Anal-
ysis and Modeling Study, First year progress Report, (1998).

[50] , Radionuclide Contamination of Soils and Groundwater at the Lake Karachai
Waste Disposal Site (Russia) and the Chernobyl Accident Site (Ukraine): Field Anal-
ysis and Modeling Study, Second year progress Report, (1999).

[51] P. A. Raviart and J. M. Thomas, A mixed finite element method for second order
elliptic problems, in Mathematical Aspects of the Finite Elements Method, I. Galligani
and E. Magenes, eds., no. 606 in Lecture Notes in Mathematics, New York, 1977,
Springer-Verlag.

[52] P. L. Roe, Some contributions to the modelling of discontinuous flows, Lectures Appl.
Math., 22 (1985), pp. 163–193.

126



[53] G. Ségol, Classic Groundwater Simulations, Prentice-Hall, Inc., Englewood Cliff,
NJ 07632, 1994.

[54] G. A. Sod, Numerical Methods in Fluid Dynamics, Cambridge University Press, New
York, 1985.

[55] P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation
laws, SIAM J. Num. Anal., 21 (1984), pp. 995–1011.

[56] C. Tai, D. Chiang, and Y. Su, Explicit time marching methods for the time-
dependent Euler computations, J. Comp. Phys., 130 (1997), pp. 191–202.

[57] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-
Verlag, Berlin, 1997.

[58] G. D. van Albada, B. van Leer, and W. W. Roberts Jr., A comparative
study of computational methods in cosmic gas dynamics, Astron. Astroph., 108 (1982),
pp. 76–84.

[59] B. van Leer, Towards the ultimate conservative difference scheme. V. a second-order
sequel to Godunov’s method, J. Comp. Phys., 32 (1979), pp. 101–163.

[60] C. I. Voss and W. R. Souza, Variable density flow and solute transport simulation
of regional aquifers containing a narrow freshwater-saltwater transition zone, Water
Resour. Res., 23 (1987), pp. 1851–1866.

[61] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences
for elliptic problems, SIAM J. Num. Anal., 25 (1988), pp. 351–375.

127


