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Abstract

Godunov Mixed Methods on triangular grids has been shown to be an effec-
tive tool for the solution of the two-dimensional advection-dispersion equation. The
method is based on the discretization of the dispersive flux by means of the mixed
hybrid finite element approach, while a high resolution Godunov-like finite volume
scheme discretizes advection. The two techniques are combined together through a
time-splitting algorithm that achieves formal second order accuracy if a corrective
term is added in the finite volume stencil. In this paper we develop and study the
extension of this approach to three dimensions employing tetrahedral elements and
a fully 3D limiter. Particular attention is devoted to the choice of a truly three-
dimensional limiter that preserves second order accuracy in space. To this aim,
several generalizations of two dimensional finite volumes schemes are presented and
their behavior in three dimensions is analyzed. The numerical characteristics of the
proposed method is studied both theoretically and numerically using simple test

problems.

1 Introduction

In this paper we propose a time-splitting approach for the numerical solution of the
advection-dispersion equation in three dimensions, on three-dimensional triangulations. In
two dimensions, this technique has been developed as a reliable tool for producing accurate
numerical approximations of advection-dispersion equations, discretizing indipendently the
advective and dispersive terms with techniques deemed most appropriate [4, 11]. High res-
olution Godunov-type Finite Volume (HRFV) schemes for discretizing advection have been
employed in combination with a Mixed Hybrid Finite Elements (MHFE) scheme for the
discretization of the dispersion term [11, 12, 10, 13]. The extension of this technique to
three dimensions requires careful consideration in particular on the adoption of an ap-
propriate HRFV scheme combined with a truly three-dimensional limiter that preserves
second order accuracy in space.

Extensions of cell centered Finite Volume (FV) schemes for unstructured triangular
meshes to tetrahedra seem to be readily feasible from a theoretical point of view. Prac-

tically, when generalizing these schemes to three dimensional triangulations, application



of a truly three-dimensional limiter for modifying the underlying finite volume schemes
in such a way that the resulting method is monotone can drastically reduce the order of
accuracy, yielding poor results. The reason for this behavior is mainly attributed to the
poorly structured tetrahedra that need to be used in a 3D mesh. Methods as proposed
in [5, 2, 7] that work well in two dimensions, generalized to tetrahedra result in a first
order accurate scheme. The limiters proposed to enforce a positivity constraint on these
schemes may be not appropriate when extended to tetrahedra. The great computational
effort to choose the right interpolant for the linear reconstruction (four linear interpolant
in the case of the extension of Durlofsky et al. [5] scheme and five interpolant in the case
of Batten et al. scheme [2]) does not correspond to an improvement in terms of accuracy
of the solution. Even if it has been noted that the use of linear reconstructions does not
always imply second or higher order accuracy even when the solution is smooth [1], such
failure of the above generalized methods requires more investigation.

On the contrary, other schemes seem to be quite suited to be applied on tetrahedra.
Indeed, better results are obtained when applying the so called extremum limiter, pro-
posed by [15], and the limiter introduced by Barth and Jespersen [1]. Application of the
above limiters guarantees that the reconstructed values along the faces of each tetrahedron
well satisfy a local maximum principle. Anyway, the numerical results show that more
confidence can be given to the Barth-Jespersen limiter.

The latter strategy in combination with a linear reconstruction obtained by the least
squares method (LSM) is then applied to the time splitting technique.

The time splitting technique that combines the HRFV scheme based on the LSM
method for advection with the MHFE scheme for dispersion preserves the same accu-
racy, robustness and convergence properties studied and verified in the two dimensional
case. Simple examples of one and two dimensional problems solved on tetrahedral meshes
confirm the theoretical behavior of the proposed scheme.

This paper is organized as follows: in Section 2 we introduce the advection-dispersion
equation governing subsurface contaminant transport and give an overview of the time-
splitting technique. In Section 3 we report on the construction of the three dimensional
MHFE method and describe several computational details. In Section 4 we state an outline

of HRFV schemes with different linear reconstructions and limiters. In Section 5 we discuss



the numerical results obtained for simple advection, dispersion and advection-dispersion
problems. Finally, in Section 7 we propose some conclusions arising from the work. For
the sake of completeness, in appendix are included some computational notes useful when
working in two dimensions. Practically they recall some details described in Sections 3 and

4.

2 Time splitting algorithm

In the following, we refer to the advection-dispersion equation governing subsurface con-

taminant transport:

8%0+6-(17c—pﬁc) =f onQx (0,7,

c=c on Q x 0,

c=bp on I'p x (0,71, (2.1)
—DVe-ii = by on Ty x (0,7

(7c — DVe¢) - ii = be on T'¢ x (0,7]

where ¢ is the concentration of the solute, ¢(t) is the porosity of the medium, ¢ is time
U= '17(]3, t) is Darcy’s velocity, P = (x,y,2) is the Cartesian spatial coordinate vector,
D = D(7) is the tensor accounting for mechanical dispersion and molecular diffusion, and f
is a source or sink term. Moreover, 77 is the outward normal unit vector, ¢° is concentration
at time 0, bp is the prescribed concentration (Dirichlet condition) on boundary I'p, by is the
prescribed dispersive flux (Neumann condition) across boundary I'y, bc is the prescribed
total flulx of solute (Cauchy conditions) across boundary I'c (2 € R*, T =TpUl'yUT¢ =
02 and T is the final time of observation). In the following, we set ¢ = 1, since its variation
with time is neglected in the transport equation, being in general much smaller than the
concentration variations.

Denoting by F and G the advective and dispersive fluxes, respectively, equation (2.1)

may be written as:

%4_6(}34_@) = f on Q x (0,7 (2.2)

G = —DVc (2.4)



The aim of the time splitting algorithm is to solve equations (2.2) taking into account the
splitting of the advection and the dispersion fluxes into two separate partial differential
equations, respectively.

The time splitting technique, applied on a three dimensional mesh, discretizes the

domain €2 into m tetrahedra T;, [ = 1,..., m. Concentration c is then approximated by:
m
c~c= Z Cl¢l7
=1

where 1), are Py(7}) scalar basis functions, taking on the value one on tetrahedron 7; and
zero elsewhere.

The advection-dispersion equation (2.2) is discretized using the time splitting algorithm
that combines a HRFV scheme for the advection term and a MHFE scheme for the dis-
persion term. This technique can be viewed as a predictor-corrector approach as follows.
Multiplying equation (2.2) by ¢, and integrating in space and time, with time step At over
the time interval [t*,#*1] the following semidiscrete equations are obtained:

T A N o SR T NN PR ) 0
= - [V-(F(c )+ G(") — Y] dA, l=1,...,m
where cf is the volume average over T} defined by cf = /T l c(-,t*) dA/|T;|, |T;| is the volume
of T; and a weighted scheme is used for the time quadrature with weighting parameter
6 € [0.5,1] and c*+? = Ock+L + (1 — 6)cF.

Integration in time is explicit for the F'V scheme and implicit for the MHFE method.
We combine explicit and implicit first order Euler scheme (6 = 1) or explicit and implicit
second order mid-point rule (6 = 0.5). Since the stability of the advection discretization
is determined by the CFL constraint, while the dispersive step is not subject to stability
restrictions, different time steps sizes are allowed for advection and dispersion, At, and
Atgy, respectively. Thus a finer advection time step together with a coarser dispersive time
step can be employed. The relationship between the two time steps is: Aty = n,At,, with
n, integer > 1.

The accuracy of the scheme is influenced by the accuracy of the two spatial discretiza-
tion methods employed. Namely, second order in space is obtained at the centroids of the
tetrahedra, as both HRFV and MHFE are there spatially second order accurate. The time-

splitting algorithm, however, introduces an O(At) error in the overall procedure, which is



thus only first order accurate in time [11]. Second order accuracy in space and time can
be achieved with n, = 1 when a correction term is added to the FV scheme [10]. It is
straightforward to choose n, > 1 when first order schemes in time are employed, and
n, = 1 otherwise, to avoid order reduction. The correction term is required to take into
account the influence of dispersion when applying the midpoint rule in the FV scheme and
is simply obtained adding a backward finite difference in the linear reconstruction of the
FV discretization.

Denoting by L, and Ly the advective and dispersive numerical fluxes, respectively, the
time splitting technique can be summarized in the following way [11, 12]:

ALGORITHM 2.1.

For each time step do:

e advection step: for each T} solve n, times with the explicit FV scheme (n, > 1 when
0 = 1, n, = 1 otherwise), using At, as the time step, determining the predictor

concentration ¢

1. cl(o) =

2. DO, =0,n, — 1

et = i) 4 Aty [Lo(cf ") (2.5)
END DO
3. bt = e
e dispersion step: for each T; solve with implicit MHFE method using éf“ as initial
condition
ot =&t + Aty | La(cf )] (2.6)
k1

with Atg = At = n,At,, obtaining the final approximation ¢,

3 MHFE discretization

The MHFE formulation applied to the discretization of the dispersive step extends to tetra-

hedra the algorithm applied to triangles in the two dimensional case [9, 11]. Given the
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tetrahedral mesh, the dispersive flux G is approximated on tetrahedron 7; as G ~ Z gj1W;i
j=1

where w;; are the discontinous RT0 vector basis functions. The MHFE formulation intro-

duces the unknown Lagrange multiplier expressed as A = Z Ajpj, where n is the number
of faces of the mesh, \; represents the trace of the concentjrzltion on the face f; and p; are
piecewise constant basis functions.

Set the time step Aty (At) on the time interval [t*, ¢*71]  discretization of equation (2.6)

by MHFE in space and the #-weighted scheme in time yields:

A —-B Q gk+e 0
BT P 0 k0 | =| f4 P&kt (3.1)
QT 00 AkJrG bN

where A = diag[A, ..., An|, B = diag|B;,...,B,| and

Ay = (ag) = / Dj My - by dA
T
Blz(bi):/ﬁwﬂ dA
T
— (g) = [ psig - dT
Q = (¢4) /an”jw’ i
g = (9r) = ga

f:(fl):/TlfldA

where i,k = 1,2,3,4, j =1,...,n, r =4(l—1)+¢and c = (¢), A = (}), and by =

(bn;) where by; assumes a non vanishing value only if there is a Neumann condition on
k+1

a boundary face f;. Setting P* = diag[pF,...,pF)] with p} = ¢F|T;|/At then P’ = 7
and P = P' — P*1 4+ P*_ If pF is not dependent on time, then P’ = P. The vector 7,
represents the outward normal to 7;. Along each face of e; T it is expressed as 7i;;.

A final system of equations for the unknown A is obtained:
QTMQN*Y = QTSH(f + P&*) — by (3.2)

where H = D' + BTA™'B, S = A"'B,and M = A~! — SH~1ST. The system is symmet-
ric and positive and can be solved efficiently by the Preconditioned Conjugate Gradient

method. Once A**? is calculated, c#*! is easily evaluated.



3.1 Details about integrals computation

Computation of the entries a;, b;, g-; of system (3.1) requires knowledge of some geomet-
rical relationships and of the RT0 basis functions on tetrahedra. In the following we will
consider a generic tetrahedron T' (or T;), with faces eq, es, e3, e4 (€1, e, €31, €41, respectively)

and vertices (or nodes) P, P, B, P,.

3.1.1 Surface through 131, ﬁg, ﬁg

Given a face e; with vertices ]5; = (z,95,2;), J = 1,2, 3, the surface passing through ]31,

P, P; can be written as:

r y =z 1
T z1 1
1 Yy1oA —0 (3.3)
To Y2 2z 1
r3 Y3 z3 1

Equation (3.3) is equivalent to

r—r1 Y—WHh <—x
r—T Y—Yy1 22—z
x1 Y1 21
=0 |zm-—2 pp-—y1 2—2zn|=0&
Tog—T1 Yo—UY1 22— 21
T3 —T1 Ys— Y1 23— <1

0
1
0
T3—T1 Ys—y1 23—z 0
)+ By —y)+y(z—2)=0 (3.4)

< alr —x;

where

Yo — Y1 22— 21
o= = (yz—yl)(23—zl) - (y3—y1)(z2—21)7
Ys — Y1 23— 21

To — X1 R — 21
8=— = (z3 — 1) (22 — 21) — (22 — 1) (23 — 21),
T3 — X1 23— 21

To—T1 Y2—U1
V= = (22 —@1)(ys — y1) — (23 — 21)(y2 — 1)
L3 —T1 Ys— U
Alternatevely, «, (3, v can also be written as:
I vz Iz = I =z oy

a=|1 19y 2 B=—|1 22 22, 7=|1 22

1 ys 23 1 3 23 I z3 y3



LEMMA 3.1. It is straightforward to prove that

1 Y1 oz
o+ yf+ay =2y Yo 2 (3.5)
T3 Yz z3

Proof. A first way to prove (3.5) is by direct substitution of the values defining a, [
and 7.
A second way is given by writing the surface (3.3) through 131, ]32, P; as

noz 1l T oz 1 r1 Yy 1 T Y1 &4
Ty 20 1 |=Y|xg 20 1 |+2| 29 90 1|— |23 72 20| =0
ys z3 1 T3 z3 1 r3 yz 1 T3 Y3 23
1 Y1 A
Sar+By+yz—| 1z y2 2z =0 (3.6)
I3 Ys %3

Since the same surface can be written as (3.4), by comparison we obtain relation (3.5).

3.1.2 Normal to the surface

Introducing 77, the normal to the surface, that is to a face of the tetrahedron, its normalized

components can be written as:

r Q¥ 2 +2 v Q¥ P2+ A2 ? [0+ B2+ 2

Therefore the surface equation (3.4) becomes:

male = 1) +my(y — 1) +na(z = 21) = 0 (3.7)

The normal 7 must be external to the tetrahedron. At the moment, we consider 7 as
external, next we will see the difference between internal and external normal and how to

choose the right one.



3.1.3 Integrals computation

An other useful consideration is concerning the computation of a surface integral. Given
the surface S = S(z,y, z) such that z = f(x,y), z depending on z and y, with (z,y) € D,
D being a 2D section of S, then

[ 9@..2) ds = [ gla.y, flay)y/1+ 2+ F; dz ay.

In the case of S = e;, from equation (3.7) we obtain

n n

_ _ T _ Yy —
i=m = (z — z) o (y — 1)
and
Ny Ny 1
[ oy as=[ [ gyn-"2@—w) - "ty-p) - drdy.  (38)
e; D n, ny | Z|
3.1.4 RTO basis functions
For each tetrahedron T;, [ = 1,....,m, with faces ey, ey, €31, €4, the RT0 basis functions
wy (i =1,2,3,4) are of the following form:
a;; T + bil
Wy = a;y + ci
agz +dj
and satisfy the following property:
o 1 ifj=i
/ Wi - Ny dS = 5@' == (39)
eil 0 otherwise

where 7;; is the outward normal to e;. For sake of simplicity, we will omit the subscripts
1l when referring to the coefficients a, b, ¢, d.
Taking into account relation (3.8), computation of the integral [, wj - 7y dS is given

in the following way (we consider a face with nodes (z1,y1, 21), (22, Y2, 22), (%3, Y3, 23)):

/ Wy - My dS = / (ax + b)ng + (ay + c)ny + (az +d)n, dS =
o 1 1
a/D{a:nx +yny, + [z1 — Zzia: —Ty) — Z?:(y — yl)]nz}m da:ldy + /D(bnm + cny + dnz)mdxdy =
— dz dy +/ (bngy + cny + an)ﬁ dz dy =

D n.,
|D|

‘nz|

a/D(xlnm + yiny + 211;)

D
a(z1ng + yin, + zlnz)u + (bng + cny, + dn;)

|nz‘

-
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TABLE 3.1: Vertices and opposite node of each face.
face vertices opposite

€1 PP P Py
€2 P, Py Py P
es | P3 Py P Py
e, |Pv P Py Py

where |D| is the area of the triangle with vertices (z1,v1), (22,%2), (z3,¥s3), that is the

absolute value of
1 71 »n
1 1
5 Iz yo | = 3
1 23 ys

D 1
Therefore |2l = iy/ozz + (% + 42 and integral / Wy - 1ty dS becomes:
n €;

-

1
/ Wy - my dS = g(xla + B+ z17) + i(ba + B+ dy)

Let us consider a generic tetrahedron 7" with faces and vertices as described in Table 3.1.

Therefore, taking into account, for example, the face e; opposite to node P, we can write:
. a 1
/ Wy - fiy d = 5(.’172& + Y28 + 2977) + Q(ba +cf + dy)
€2

where «, 3, are the components of the normal vector to the face e;. Note that now we
have x5, 2 and z; in the right hand side of the previous relation.

From the literature, it is known that the classical 3D Galerkin function

ai + bll' + 1y + d12

N f—
! 6V

1
W(blacladl)v

with V' the volume of the tetrahedron. Therefore, with reference to face e,, we can set:

is such that its gradient is normal to the face e5. The gradient is: VN, =

a=b, f=c, v=d.

Moreover, 6]\72' is normal to face e;11, ¢ = 1,2,3, while VN, is normal to e;. In

particular, the coefficients a;, b;, ¢;, d;, © = 1,2, 3, 4 of the Galerkin functions are as described
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in the following;:

T2 Y2 Zz2 1 Y1 oz 1 Y1 oz 1 Y1 oz

1= |23 Y3 23| 2= —| T3 Y3 23| A3=| Ty Yo 22| @4=—"| T2 Y2 22

Ty Ys 24 Ty Ys 24 Ty Ys 24 T3 Y3 Zz3
1 yo 2o 1 1o~ 1 y1i = 1 y1 o~
bi=—11 y3 23| ba=1|1 y3 23| bs=—|1 9o 20| ba=|1 1 2
1 ys 24 1 ys 24 1 ys 2z 1 ys3 23
1 x5 2 1 1 =z 1 1 ~ 1 =7 ~
=11 T3 23 c2=—|1 T3 23 3= |1 x9 29 Cs=—|1 x9 29
1 Ty 24 1 Ty 24 1 Ty 24 1 I3 23
1z wye 1 1 »n Iz »n 1 = wn
di=—11 23 y3| de=1]1 23 y3| d3=—|1 29 yo | da=|1 5 3o
1 24 ys Iz ya I x4 ys 1 z3 y3

Recalling relation (3.6) and substituting the values of by, ¢4, dy, a4, the surface through

]31, ]32, ]33 can be written as:
byx 4+ cyy +dyz+ a4 =0
From comparison with equation (3.4) we obtain:
ary + By +y21 = —ay, a=0by, B=c4 y=4dy
Thus
[ @i ds = e+ %(mb +ese + dyd). (3.10)
The unknowns are a,b, ¢,d of W;. Setting j = 1, from relation (3.9) we obtain:
/ @y -, dS =1, / @y -1 dS =0, / @y -1 dS = 0, / @y -1 dS = 0.
e1 es es eq
Substituting (3.10) we get:

—a4a + b4b + cqCc + d4d =2

—a1a+bb+cic+did=0
1 1 1 1 (3.11)
—a2a+b2b—|—620+d2d20

—asa + bgb + c3c + dgd =0
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Solution of system (3.11) gives the values of a, b, ¢,d of w;. Similar relations hold for the

other basis functions. It is interesting to observe that from the previous system, we obtain:

4 4 4 4
i=1 i=1 i=1 i=1

4 4 4
Is it straightforward to prove that Z b, = Z c; = Z d; =0. Indeed,

i=1 =1 i=1

—_

Y1~

—_

b = — Y2 %2

1

4
1=

Ys =3

—_ = = =
—_

1 ys 24

(similar considerations hold for the summations in ¢; and d;).
Instead, it is very simple to prove that

4

where V is the volume of the tetrahedron defined as

Lz 1 oz
V= 1L 29 Y2 2
61 I3 Y3 =3
I x4 ys 2
Therefore equation (3.12) becomes:
—6Va=2

giving a relationship between a and the volume V:

b
3V

a =

(3.13)

Now we are able to distinguish between inner and outward normal. By the divergence

theorem we get:

4
[V dxdydz:/a w7 dS =3 [ 7 dS =1
T T

i=1"¢
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But,
- ow, Oow, 0w
@y do dy dz = | av = [3aav =

/Tlexyz T(0x+0y+8z)v T3aV 3alV|

Thus
3aV| =1 (3.14)

1

and a = —— must be a positive value. Relation (3.13) between a and V' is written with

3|V

no consideration about the sign of a. We are now able to conclude that if computation of
a from system (3.11) gives a negative value for a, we have worked with an inner normal.
In this case, it will be sufficient to change the signs of a,b, c,d and to consider —w;. If a
is positive, then the normal is external.

These results are in accordance with the following statement, useful to decide if the
normal is external or not. Given VN, (the normal to the face e;) and the barycentrum
of the tetrahedron T', G = (xg,Ya, 2c), we consider the vector passing through G and a
vertex of the face, for example ﬁ4: éﬁ4 = (24 — G, Y1 — Ya, 24 — 2g)- The inner product
GP, VN, is equal to by (x4 — z¢) + c1(ys — yo) + di(24 — 2¢). If GP,-VN; > 0 then the
normal is external, otherwise we are considering an inner normal.

From a computational point of view, relation (3.13) says that the coefficient a; is

equal along the four faces of tetrahedron 7;. Set a as the positive value a = he

! t
3IV|°
coefficient b, c,d are readily computed taking into account the first equation of system
(3.11) (substituting the value of a and regardless of the sign) and the definition of the
volume of a tetrahedron:

On the one hand, we have

—Qy -+ b4b + cyC + d4d =42 (315)

3|V
On the other and

6V = ag + x4by + yscq + 24dy4
By comparison, we obtain for the basis w:

—X4 —Y4 —Z24

b= = = ==
V)T C T 3T 3|V]

The sign of (3.15) will be positive if V' is negative and negative otherwise.
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At the same way, the coefficients of w;, j = 2, 3,4 are computed as:

b, — —Zj-1 Y I

TV 9T v YT B

It is clear, that computation of a, b, ¢, d parameters is now very easily and not expensive.

3.1.5 Computation of A, B, ()

With the above considerations and using the same notations of system (3.1), we are able
to compute the values of matrices A, B and Q).

The values of ) are g,; = / ;W - 7y dI'. With simple calculations we get:
aT,

qrj = Hj

The non vanishing entries of matrix A ay = / D; YWy - Wy dA are computed by
T

applying the Gauss-Lobatto formula to the following development:

(a;z + b;)(agz + by) N (ay + ¢;)(ary + cx) N (a;y + d;)(ary + dy)

dA
T Dx:c Dyy DZZ

Qi =

In the previous formula, matrix D; is a diagonal matrix with entries D, D,,,, D...

yy»

The diagonal entries of matrix B are equal to 1. Indeed

; Oy 0wy | Oy
T,V Wy n(ax 9y 5, ) Tl(a +a; + a;) a;|V|

We have used equality (3.14).

4 HRFYV discretization

Equation (2.5) can be explicitly written as:

At .
ATt = — o [ V(BT dA (4.1)
T 7,
with £ = 1,...,m, and is solved using as initial condition the solution calculated at the

and of the previous time step. In the two dimensional formulation, the discretization of
the equation corresponding to (4.1) was obtained by means of the Finite Volume scheme
on unstructured triangular grid, as developed by [5] and then modified by [8]. From a

theoretical point of view, this scheme can be readily generalized to tetrahedra. In practice,
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we observed that extension of two dimensional limiters may drastically reduce the order
of accuracy, yielding poor results. Only few limiters preserve second order accuracy, as we
will see in the numerical results. The reason for this behavior is mainly attributed to the
poorly structured tetrahedra that need to be used in a three dimensional mesh.

In the following, we introduce the FV formulation and describe several HRFV methods
developed on triangular grids in order to guarantee satisfaction of appropriate maximum
principle. We directly present their generalization to three dimensions and the numerical
results will be useful to decide the more suitable to be used in the time splitting technique.

Application of the divergence theorem to the right hand side of (4.1), yields

At 0 0 _.\
BLoktl _ ghok el aTlF(cf“ )i dS = ek — !Tl\ / (FH19) .7, dS (4.2)

3l

Approximation to the four integrals (advective fluxes) is given by introducing the numerical

fluxes Hle:
[ =t - > S 43)

where H§ §i is the two-point Lipschitz monotone flux (the Godunov flux) depending on the
cell averaged values of the concentration variable evaluated on the right side and on the
left side of the face e, j = 1,...,4 of T; at the time t*~¢ (in the following we omit the

time index for sake of clarity). Therefore, H ﬁ can be defined as:

HYj = H(crj, crj,nj) T (4.4)

where cg; and cy; are the reconstruction of ¢ on the right and left side of the face e; of cell
T, and T; is the surface area of face e;. High order reconstruction is obtained when the
reconstruction is not given by piecewise constant functions (the classical Godunov scheme)
but uses a piecewise linear reconstruction together with a limitation procedure.

Using formula (3.8) and applying the components of the normal to the surface 7 de-
scribed in terms of a, 3 and 7 in Section 3 the components of the advective fluxes along

each face become:

/ ﬁ(C) . T_Z:jl ds = %(F(C)ma + F(C)yﬁ + F(C)z7>

Computation of the values of «, 3,7y by formulae described in 3.1.1 does not take into

account the sign of the normal, and we are interested to an outward normal. To this aim,
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we consider the inner product between the normal and the vector passing through the
barycentrum of the tetrahedron and a vertex of the face. If the inner product is positive,
then the normal is external, otherwise we are considering an inner normal and change all
the sign of «, 3,7. The above investigation is obviously carried out before the advective
flux is computed. In the following, we denote as «;, (;,7;, the components of the normal
of the face e;.

More in detail F (¢c) = vc where U represents the velocity field. Using the midpoint
rule for integrals, the value of concentration on e; is approximated with the value on its
centroid, c¢j;, and the previous integral is approximated as:

1
§cﬂ(vxa]~ + v, 85 + v,y;5)

The numerical flux H ﬁ takes into account the sign of the integral
1
5(%0@ + v, 05 + v,y;5)

(in practice we look at the sign of the inner product v}, - 7). If this quantity is positive,
we consider the reconstruction at the right cg;, otherwise cy; is chosen. In this way the

numerical flux H§ is given by

1 1 L
Hﬁ = §CXZ(’UIOCJ' + v, 85 + v,y;) & §le(’UzOéj + v, B + vy;) & / F(c)-ni; dS
€j

where cx; may be cg; or ¢y; depending on the choice carried out.
To obtain second order approximation in space, cg; and cr; are reconstructed component-

wise from the cell averaged data in the following form:

ex;=a+7-V(L) X=R,L (4.5)
where 7; is the vector from the centroid of cell 7; to the centroid of the face e; and V(L) is
the gradient of a linear reconstruction L; of ¢ on T;. L; is also called the gradient operator.

Selecting L; to be the gradient operator in (4.5) leads to a second order accurate
method (therefore a linear solution is modelled exactly) but doesn’t prohibit overshoots
and undershoots at the centroids of the tetrahedra faces. Therefore non-linear correction
factors called ’limiters’ have to be introduced in order to satisfy a local maximum principle.

Usually a limited scheme can be expressed quite simply in two stages as:
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1. construct one or more candidates for the linear reconstruction
2. limit the gradient operator chosen from the candidates.

The first step defines a finite set of possible directions of the reconstructed gradient,

and the second step chooses one of the directions and bounds the magnitude of the slope.

4.1 The Durlofsky scheme

Extension to tetrahedra of the method developed in [5] is quite easy. In each tetrahedron
T;, four candidates for L;, designed as L{ , 7 =1,2,3,4 are generated. Indeed, we consider
the four neighboring tetrahedra, e.g. T}, T;, T, T, with centroids ﬁp, ,ﬁq, 15;, 153 and

construct four linear interpolants. The first candidate L} interpolates

(ﬁl’cl) (ﬁpvcp) (Pyrcq) (Brcr)

L? is the interpolation of
(F_jb Cl) (ﬁqa Cq) (Pr) Cr) (Psa Cs)

L? and L} interpolate

— —

(ﬁbcl) (ﬁTJCT) (PSJCS> (PP7CP)

and

(ﬁl?Cl) (p;’?CS) (Plhcp) (qucq)

—

respectively. If a face, say e;, of T} is a boundary face, we use (P, c(ﬁil, t)) instead of - say
- (f’p, ¢p) to build the linear interpolation, where F_’;-l is the centroid of the face e;.
We compute the magnitude of the gradient of each L{ , putting:

. oLi., oL, 0L, .
lLﬂzd(agj)M o) T g i=123

The following procedure for the choice of L; is used

ALGORITHM 4.1 (DURLOFSKY PROCEDURE).

1. Select the L] for which |L7| is mazimum
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2. Verify the following conditions
1(Pyp) is between ¢; and ¢,
L s between ¢; and c
l( lQ> l q (46)
1(Py) is between ¢; and c,
1(Ps) is between ¢; and c;
where ]3lp denotes the centroid of the face in common with the T, tetrahedron. If
all conditions (4.6) are satisfied then the procedure is finished and the L] is the

appropriate L.

3. If the L{ above results in overshoots or undershoots at any one of the four midpoint
(that is the above conditions are not satisfied), then select the L] for which |L]| is the
second largest and test conditions (4.6) again. If this Li does not satisfy (4.6), select
the candidate for which |L{ | is the third largest and repeat the procedure. Again, if

(4.6) are not satisfied select the interpolant for which |Li| is the minimum.

4. If no L{ satisfies the requirements (4.6), then choose L, = ¢, that is first order

reconstruction.

Note that the original algorithm [5] does not include the last step of the above de-
scription. On the other hand, Liu develops this scheme in two dimensions in the following
way [8]: if step 2 of algorithm 4.1 is not verified for any linear interpolant, a local upper
and lower bounds are computed taking into account the triangles having at least a common
point with the reference triangle. In this way, other conditions should be satisfied, starting
from the linear interpolant for which |L{ | is the maximum to the candidate with minimum
gradient. If these new conditions are not satisfied, the Liu scheme operates with the step
(4) described in algorithm 4.1. In three dimensions, the Liu scheme appears too much
complicated in the computation of the local upper and lower bounds by considering the
nearby edges (the equivalent of the nearby points in two dimensions), that is the tetrahedra
having an edge in common with the reference tetrahedron. But Liu’s choice carried out
in step 4 when conditions (4.6) are not satisfied appears suitable to avoid overshoots and

undershoots. For this reason it is added in the algorithm 4.1.
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4.2 The Min limiter scheme

This method is described in [5] as a procedure analogous to the min limiter in second-order
ENO (essentially non-oscillatory) schemes [6]. This corresponds to the selection of the L7
for which |L]| is minimum. At extrema, that is when ¢ is an extremum relative to the
values of ¢ at the centroids of the neighbouring tetrahedra, c,, ¢4, ¢, and ¢, a first-order

approximation is used.

4.3 The average scheme

To verify the effects due to the limiter in the Durlofsky and Min limiter schemes, the
reconstruction is calculated as average of the four candidates for the construction of L;.
Therefore it is high order accurate but may produce oscillatory approximation when dis-
continuities are presents. Indeed, using the previous notation, L; is set as

L+ L+ L+ L
B 4

Ly

4.4 The Limited Central Difference scheme

The Limited Central Difference (LCD) scheme is presented in [7] for unstructured trian-
gular meshes. Its extension to three dimensions can be described in the following way.
Construction of the linear interpolant requires the concentration values of the centroids of
the four neighbouring tetrahedra of the reference one. Let LY be the interpolant of the

four pairs of point and corresponding value

If the reference tetrahedron has any boundary face, we operate as described previously in
the construction of the Durlofsky method.
The LCD scheme limits L} by setting

max (¢, — ¢;,0)

= iff’v-ﬁLE’ > max (¢, — ¢, 0
S 1 V(L) ( 1,0)
v 1 v 70 L = =, . _
a = mlil (c S <,0) if 7, - V(L?) > min (¢, — ¢, 0) v=Dp,qT,S
o+ V(L})
1 otherwise
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where 7,; is the vector from the centroid of T; to the centroid of the face between cells T;

and T, and calculating the LCD gradient operator as

Ly =al} = min a"L}.
v=p,q,r;s

4.5 The Maximum Limited Gradient scheme

The Maximum Limited Gradient (MLG) scheme is proposed in [2] and can be described
as a combination of the methodologies proposed for the Durlofsky and LCD schemes.

It takes all five linear interpolants (the candidates for the reconstruction of the Durlofsky
scheme and the L} operator), limits each one in turn in the manner of the LCD scheme

and then takes L; to be the remaining operator with largest gradient.

4.6 The Least Square method with extremum limiter

This method has been proposed directly for tetrahedra in [15|. where Favre-filtered com-
pressible Navier-Stokes equations on a three dimensional unstructured grid of tetrahedral
cells are solved.

The reconstruction L; is computed by minimizing the functional
S(L)) = (Li(B) — ) + Y (L(P,) — c)? (4.7)

where v = p, q, 1, s.
The minimization is performed by the method of the Least Squares. Then, the approx-
imation of the centroid of each face of T; is calculated as

-

Cgéd =c+ Fvl ' v(Ll) v=pqrSs

and the extremum limiter is formulated as ®

0 if min (¢, ¢,) < % < max (¢, c,)
® = { max(c,c,) — % if 2 > max (¢, ¢,)
min (¢, ¢,) — c%4 if 2 < min (¢, ¢,)

The limited value of ¢,; is given by:

old
Cul = Cyy + v=pqr,s.
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The extremum limiter gets its name from the fact that it does not limit the gradients,

but directly limits the values of the variables on both sides of the face.

4.7 The Least Square method with the Barth-Jespersen limiter

The gradient operator is obtained minimizing the functional (4.7) by the method of the
least squares and is limited by applying the Barth-Jespersen slope limiter [1].
We set
= ¢+ 7y - V(L) v=Dp,q,r1,S (4.8)

and compute

=

Col = C + cI)llf‘vl ’ V(Ll) v=pqrs (49}

where cbl = min ((I)lly q)lg, q)lg, (1314) and

e old _
1 it ¢ — ¢, =0,
cmnaT _ o
. l l se old
§; = min (1, e —— ) if ¢ — ¢ >0, (4.10)
v,
cmin _ ¢ ]
max (1, - ) if 9ld — ¢ < 0.
old — ¢ v
v
) , ) 4 )
In the previous formula, ¢*" = min (¢;, minc,) and ¢™** = max (¢;, maxc,). The applica-
p y» U 1y ) 1 1y T pp
v xT

tion of the slope limiter guarantees that a local maximum principle condition is satisfied.

4.8 Time integration

The time integration is accomplished via a first order explicit Euler scheme or a second order
procedure (we choose between midpoint rule in time, Heun scheme and Runge scheme).

The midpoint rule in time is applied when the FV scheme is used in combination with
the MHFE scheme in the time splitting technique.

Observe that, in this case, the time-splitting technique introduces an error proportional
to the time step and the overall scheme is only first order accurate if no special care is
considered in the definition of the numerical flux approximation. Expanding in Taylor series
the linear reconstruction of ¢; at time t*+1/2 is approximated as Lfﬂ/ > = LE+(At/2)0ck /ot
Second order of accuracy is obtained if dcF /9t is evaluated taking into account not only the

advective flux but also the dispersive one. This can be implemented by means of backward
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finite differencing of the time derivative using the values of concentration at the previous
time t*~1, obtaining LfH/Q = LF + (cf — cf~1)/2. With this correction term, second order
accuracy in time is recovered as proved in [10] for two-dimensional triangular grids. The

theorem proved for triangles can be easily extended to tetrahedra.

5 Numerical results

In this Section we report several numerical results and convergence rates obtained in the

simulation of simple:

e advection equations - to test and compare the different HRFV schemes described

above
e dispersion equations - to test the extension of the MHFE method to tetrahedra

e advection-dispersion problems - applying the more suitable HRFV scheme with the
MHFE algorithm in the time splitting technique, to verify that the time splitting
technique works well also on tetraedral meshes and can be used to solve more com-

plicated problems.

In combination with advection and advection-dispersion equations, varying values of
CFL are considered. When testing the latter equations, also Peclet (Pe) numbers are
calculated.

The CFL number is associated to the stability of the F'V scheme and is defined for each
tetrahedron 7T} as B -

T dF

CFL = Atsupmsup|a|

4
where T; = Z Tﬂ is the total surface area of 7.
j=1
The Peclet number represents the ratio between the advective and the dispersive term

and can be defined in our case as [14]

1
= |D|Atsup —
v =|D| P
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where |D| is the norm of tensor D. Low Peclet numbers indicate that dispersion is pre-
dominant over advection, and vice versa.

About time integration, we employ the Heun scheme for advection problems, the Eu-
ler and Crank-Nicolson scheme for dispersion equations, while, for advection-dispersion
equations, we use the first order accurate in time and second order in space version of the
time-splitting algorithm using a number n, (> 1) of advective time steps per dispersive
time step, and the second order accurate in time and space version of the time-splitting
algorithm showing that introduction of the correction term in the advection step is crucial
to preserve accuracy in time.

We consider one-dimensional and two-dimensional problems solved in three-dimensional
grid systems.

More in detail, for one-dimensional problems we consider the domain [0, 1] x [0,0.1] x
[0,0.1] discretized into three different grid levels. The coarsest level (¢ = 1) is obtained
by uniformly subdividing the domain in triangular prisms that are further subdivided
into tetrahedra, obtaining a triangulation with 480 tetrahedra, 189 nodes, and 1128 faces.
Uniform subdivision of the prisms yields the next finer meshes, with the finest level formed
by 30720 tetrahedra, 6561 nodes, and 64128 faces.

For two-dimensional problems the domain is [0, 1] x [0, 1] x [0, 1] and is discretized into
three different grid levels, applying the same grid generation procedure employed for the
one-dimensional test cases. At the coarsest level (¢ = 1) we have eight subdivisions along
the y-axis and eight along the z-axis, defining a set of triangular prisms that are again
further subdivided into three tetrahedral cells. The coarsest level (¢ = 1) is characterized
by 3072 tetrahedra, 729 nodes and 6528 faces, the second level by 24576 tetrahedra, 4913
nodes and 50688 faces, while the finest level by 196608 tetrahedra, 35937 nodes and 399360
faces.

Note that in the case of costant coefficients of advection-dispersion equations, Pe de-
creases by a factor of 4 in passing from a coarser to a finer level.

The numerical convergence of the scheme is evaluated by calculating L, relative errors

at different grid levels (|es2|) and evaluating the rates of convergence at each level.
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The L, error norm is calculated using the following formula:

Ji (c(Bt¥) — )2
lecal = ~ == , (5.1)
Zc(ﬁl,tk)Q

=1

where c(ﬁl,tk) is the analytical solution on the centroid of 7} at time ¢* and ¢} is the

corresponding numerical solution.

5.1 Advection equations

To compare the accuracy and robusteness of the proposed HRFV schemes, it is sufficient
to test simple advection equations whose exact solutions are: = — v,t, sin 27 (x — v,t), and
sin 27 (z — v,t) sin 27(y — vyt). To this aim, appropriate Dirichlet boundary conditions are
imposed. Velocity is set equal to v = (1,0,0) for the one-dimensional tests and equal to
¥ = (0.5,0.5,0) for the two-dimensional example. We will refer to the above experiments
as TEST1, TEST2 and TEST3, respectively.

In addition to the algorithms proposed in Section 4, we also consider the schemes in
which no limiter is applied to the interpolant introduced by the LCD method (the L7
operator) and to the interpolant derived by the least squares minimization, the methods
obtained limiting the L} operator by applying the extremum and the Barth-Jespersen
limiters respectively, and the method obtained applying the limiter proposed in the LCD
scheme to the operator of the least squares minimization. In this way, we can observe the
effects of the limiters on different operators.

Therefore we will consider the following schemes:

Durlofsky method (DUR)

min limiter method (MIN)

e average method (AVG)

limited central difference method (LCD)

no limited central difference method (NLCD)
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e limited central difference method with extremum limiter (LCD_EXTR)

e limited central difference method with Barth-Jespersen limiter (LCD_BJ)
e maximum limited gradient scheme (MLG)

e least square method with extremum limiter (LSM_EXTR)

e least square method with Barth-Jespersen limiter (LSM_BJ)

e least square method with LCD limiter (LSM_LCD)

e 10 limited least square method (NL_LSM)

A time step At = 1 x 1073 is used at the coarsest mesh of the one-dimensional tests
and halved in passing to the next finer level. The CFL is kept constant at 0.29. In the
two-dimensional example the time step is At =4 x 1073 at the coarsest mesh (and halved
in passing to the next finer level), and the CFL is equal to 0.33.

Table 5.1 shows the results obtained for the three tests relative to a final time t* = 0.1
s (TEST1 and TEST3) and t* = 1 s (TEST?2).

It appears that DUR, LCD, MLG and LSM_LCD display first order of accuracy. An
explanation of this order reduction is due to the effect of the limiter applied, leading to
the conclusion that HRF'V methods working well in two dimensional grids are not readily
generalized to three dimension preserving high spatial accuracy. AVG, NLCD, NL_LSM,
where no limiter is applied, give the expected convergence rates, confirming that the lim-
iters do not work well in the previous methods. The MIN method give satisfactory results
for the one-dimensional examples but display first order accuracy in TEST3. LCD_EXTR
and LSM_EXTR are of second order in TEST1 and TEST2 and reach about 1.40 conver-
gence rate in TEST3. Note that the results obtained with both methods are very similar,
therefore the limiter effects are dominant to respect the choice of the gradient operator.
Finally, LCD_BJ and LSM_BJ are of second order in the one-dimensional tests and achieve
about 1.80 order accurate in TEST3 (about 1.85 is the rate observed when no limiter is
applied). As before, note that there is no relevant difference between the two methods.

Displayed in Figure 5.1 is a log-log plot of Ly error obtained for TEST3 versus the spacing
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between adiacent nodes of the different meshes (theoretical first and second order errors
are also plotted to better compare the differents convergence rates).

From the numerical results we can conclude that extension to three dimensions of limiter
techniques working satisfactorily in two-dimensions is not so readily as suggested by many
authors. The use of linear reconstructions does not always imply second order accuracy
even when theoretical considerations seem to suggest high order reconstruction. Three
dimensional reconstruction requires careful attention when working on tetrahedral meshes.
First order of accuracy achieved by limited schemes may be due to the poorly structured
tetrahedra that need to be used in a three dimensional mesh. The Barth-Jespersen limiter
seems to overcome this effects and appears as the more efficient between those proposed.

Some open question still remain about the anisotropy of the tetrahedral mesh and the
capability of the above limiters of properly correcting the linear reconstruction along all
the faces of each tetrahedron. This topic will be discussed in future research.

When applying the time splitting technique, we will operate with the LSM _BJ scheme.

5.2 Dispersion equations

As first test problem we consider the one-dimensional problem whose exact solution is given
by ¢ = 2exp (—m2Dt) sin (rx). The dispersion coefficient D is set equal to D =1 x 1071
As initial time step is used the value Aty = 1 x 1072. Convergence results of the MHFE
method in combination with the implicit Euler (Eu) or Mid-point (MP) discretization in
time are reported in Table 5.2 at the times t* = 0.1 and t* = 1 s. Like predicted from
theory, first order of convergence is observed when using the Eu scheme and second order
when using the MP scheme.

As two dimensional example we consider the steady-state problem associated to the
exact solution ¢ = sin (7z)sin (wy). This test is useful to ascertain superconvergence at
the centroids of the tetrahedra. Indeed, the results confirm the theory, as displayed in
Table 5.3.



TABLE 5.1: Adwvection tests.

method

TEST1
0.1s

leca|  rate

0.1s
lesa|

TEST2
1s

rate | |epol

rate

TEST3
0.1s

lega|  rate

DUR

9.50e-3
5.09¢e-3
2.62e-3

0.90
0.96

3.84e-2
1.90e-2
9.57e-3

1.28e-1
6.41e-2
3.25e-2

1.01
0.99

1.00
0.98

1.29e-1
6.56e-2
3.49e-2

0.97
0.91

MIN

3.45e-3
7.98e-4
2.06e-4

2.11
1.95

1.37e-2
4.35e-3
1.27e-3

3.66e-2
1.36e-2
5.13e-3

1.65
1.78

1.43
1.41

8.58e-2
3.48e-2
2.03e-2

1.30
0.78

AVG

3.90e-3
1.01e-3
2.60e-4

1.95
1.96

1.16e-2
3.51e-3
9.76e-4

2.26e-2
7.52e-3
2.18e-3

1.72
1.85

1.59
1.79

7.38e-2
2.42e-2
6.69¢-3

1.61
1.85

LCD

8.05e-3
4.91e-3
2.61e-3

0.71
0.91

3.96e-2
1.91e-2
9.45e-3

1.47e-1
6.61e-2
3.12e-2

1.05
1.01

1.15
1.08

1.18e-1
5.67e-2
2.70e-2

1.06
1.07

NLCD

3.77e-3
9.83e-4
2.50e-4

1.94
1.97

1.12e-2
3.33e-3
9.17e-4

2.15e-2
7.04e-3
2.03e-3

1.75
1.86

1.61
1.79

7.33e-2
2.42e-2
6.67e-3

1.60
1.86

LCD_EXTR

4.14e-3
1.04e-3
2.60e-4

1.99
2.00

1.28e-2
3.68e-3
1.01e-3

2.27e-2
7.76e-3
2.37e-3

1.80
1.86

1.55
1.71

8.61e-2
3.30e-2
1.24e-2

1.38
1.41

LCD_BJ

3.99¢-3
1.02e-3
2.58e-4

1.97
1.98

1.24e-2
3.63e-3
1.01e-3

2.32e-2
7.80e-3
2.36e-3

1.77
1.84

1.57
1.72

7.13e-2
2.48e-2
7.24e-3

1.52
1.78

MLG

1.11e-2
5.20e-3
2.61e-3

1.09
0.99

3.61le-2
1.74e-2
8.79e-3

9.24e-2
4.83e-2
2.49e-2

1.05
0.98

0.93
0.95

1.10e-1
5.28e-2
2.74e-2

1.06
0.95

LSM_EXTR

4.14e-3
1.03e-3
2.57e-4

2.01
2.00

1.28e-2
3.66e-3
1.00e-3

2.25e-2
7.66e-3
2.33e-3

1.81
1.87

1.55
1.72

8.60e-2
3.31e-2
1.24e-2

1.38
1.42

LSM_BJ

3.96e-3
1.01e-3
2.55e-4

1.97
1.98

1.24e-2
3.60e-3
1.00e-3

2.29¢-2
7.67e-3
2.32e-3

1.78
1.85

1.58
1.72

7.12e-2
2.49e-2
7.24e-3

1.51
1.78

LSM_LCD

8.05e-3
4.91e-3
2.61e-3

0.71
0.91

3.96e-2
1.91e-2
9.45e-3

1.47e-1
6.61e-2
3.12e-2

1.05
1.01

1.15
1.08

1.18e-1
5.67e-2
2.70e-2

1.06
1.07

NL_LSM

WON HWN FFIWNFEIWN WM RFRWNEFEWN FFEWN PR WN FEIWN FEWN W -

3.72¢-3
9.74e-4
2.46e-4

1.93
1.98

1.11e-2
3.28e-3
9.02e-4

2.12e-2
6.91e-3
1.99e-3

1.76
1.86

1.62
1.79

7.32e-2
2.42e-2
6.67e-3

1.60
1.86

27
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FIGURE 5.1: Advection TESTS3: Ly error vs spacing between adiacent nodes of the different
meshes.

TABLE 5.2: Dispersion test. Example 1D.

l Eu MP

0.1s 1s 0.1s 1s
leca|  rate | |ega|  rate | |ego| rate | |ego| rate
1| 5.56e-4 5.57e-3 1.96e-4 7.62e-4
2.60e-4 1.10 | 2.60e-3 1.10 | 4.88e-5 2.00 | 1.80e-4 2.08
3| 1.26e-4 1.04 | 1.26e-3 1.04 | 1.17e-5 2.06 | 4.38e-5 2.04

[\




TABLE 5.3: Dispersion test. Example 2D. Steady-state.

0| leg2| rate
1| 3.17e-2

2 | 8.04e-3 1.98
312024 199
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TABLE 5.4: Advection-dispersion test. 1D Example 1: D = 1l.e — 2, v = (1,0,0).

Eu-Eun,=1 EuEun,=4 EuEun,=8 MP/NCORR MP/CORR
¢ Pe leca|  rate  |eg2| rate  |ego| rate  |ega| rate  |ego|  rate
1 06 0.78e-3 5.63e-3 5.56e-3 0.87e-3 5.84e-3
2 015 1.32e-3 213 1.28e-3 2.14 1.32e-3 2.07 1.35e-3 2.12 1.13e-3 2.37
3 0.038 5.18¢-4 1.35 5.20e-4 1.30 5.44e-4 1.28 5.30e-4 1.35 2.64e-4 2.10

5.3 Advection-dispersion equations

First we consider one-dimensional problems solved in a three-dimensional grid system. In

the case of costant coefficients, Pe decreases by a factor of 4 in passing from a coarser to

a finer level, while CFL is kept constant at 0.29.

5.3.1 Example 1.

The first test solves the transport equation on the rectangular domain previously described,

with velocity defined as ¥ = (1,0,0). The Dirichlet boundary conditions and the source

term are determined so that the exact solution is given by 0(13, t) = sin2mw(x — t). A time

step At, = 1 x 1073 is used at the coarsest mesh and halved in passing to the next finer

level. The dispersive time step is set equal to the advective one when considering second

TABLE 5.5: Advection-dispersion equation. 1D Example 1: D =1l.e — 4, ¥ = (1,0,0).

Eu-Eun,=1 Eu-Eun,=4 EuEun,=8 MP/NCORR MP/CORR
¢ Pe |egs| rate |ega| rate  |ego|  rate  |eg2| rate  |ego|  rate
1 60 1.11le-2 1.11e-2 1.11e-2 1.15e-2 1.14e-2
2 15 3.48e-3 1.67 3.47e-3 1.68 3.46e-3 1.68 3.70e-3 1.64 3.44e-3 1.73
3 3.8 1.10e-3 1.66 1.10e-3 1.66 1.09e-3 1.67 1.23e-3 1.59 9.64e-4 1.83
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order discretization scheme in time while in the other cases it depends on the number of
advective steps n, allowed for each dispersive time step, following the formula described
in Algorithm (2.1). All the results reported are relative to a final time t* = 0.1 s. We
compare the time splitting technique with first order of accuracy in time (Eu-Eu) and
different advective time steps for dispersive steps (n,=1,4,8) and applying second order
discretization scheme in time adding the correction term in the FV scheme (MP-CORR)
and with no correction (MP-NCORR).

Two different values of dimensionless dispersion are considered: D = 1 x 102 and
D =1 x 107* In the first case dispersion is dominant and Pe varies from 0.6 (¢ = 1) to
0.038 (¢ = 3). The convergence of the scheme is mainly driven by the MHFE technique.
Indeed, with Eu-Eu procedure, the best results are obtained with the same time steps for
advection and dispersion (n, = 1) as shown in Table 5.4, while the correction term in the
second order time-splitting algorithm is necessary to preserve second order convergence
rate. With D =1 x 10~* advection is dominant: Pe varies from 60 (¢ = 1) to 3.8 (£ = 3)
and the advective terms become important, expecting better accuracy for Eu-Eu when
ne > 1. Table 5.5 shows the errors and convergence rates for D = 1 x 107%. We can
observe that the differences between the Eu-Eu schemes with n, =1, n, =4 and n, = 8
are not important, so that n, > 1 advective steps for dispersive step can be employed,
reducing the total number of time steps (and of MHFE linear systems solution) by n, with
significant saving of CPU time and, at the same time, no visible accuracy reduction. Once
again we observe that the results obtained with MP-CORR show second order accuracy
while the MP-NCORR scheme displays an order of accuracy less than that achieved by

the Eu-Eu scheme, according to the theory.

5.3.2 Example 2.

A second test problem considers the partial differential equation describing the movement
of a tracer in a semi-infinite column and simulate it on the same three dimensional domain
used in the previous example, with 7 = (1,0,0) and D = 1x10~2. The boundary conditions
are c=1in x = 0 and ¢ = 0 for x = 0co. Zero concentration is used as initial condition.

The infinite domain is simulated numerically by employing the grid of unitary length and



31

TABLE 5.6: Advection-dispersion equation. 1D Example 2: D =1l.e —2, ¥ = (1,0,0)

Eu-Eun,=1 Eu-Eun,=4 Eu-Eun,=8 MP/NCORR MP/CORR

Pe leca]  rate  |es2| rate  |ega| rate  |ega| rate  |ego|  rate

0.6 1.70e-2 1.94e-2 2.34e-2 1.55e-2 1.73e-2
0.15 6.83e-3 131 9.38e-3 1.05 1.29e-2 086 6.02e-3 1.36 4.83e-3 1.84
0.038 3.0le-3 1.18 4.8le-3 096 7.56e-3 0.77 2.65e-3 1.18 1.28e-3 1.91

W N PSS

making sure that at the time at which the relative error is evaluated the solution vanishes

naturally at the right boundary. The analytical solution to this problem is given by [3]:

T —v m+v1t

—l— ex
N b5 VD
The same values of CFL and time step sizes as used previously are employed for this

simulation, while Pe varies from 0.6 (¢ = 1) to 0.038 (¢ = 3). Table 5.6 shows the errors

o(P,t) = L L

5 (erfe

and convergence rates at the different levels confirming the considerations stated above for

the same dispersion and velocity parameters.

5.3.3 Two-dimensional test

We now describe a two-dimensional problem solved in the three-dimensional grid system.
We consider a velocity field ¢ = (.5,.5,0) and vary the size of the dispersion coefficient.
The Dirichlet boundary conditions and the source term are determined so that the exact
solution is given by ¢(P,t) = sin 2m(z — vyt) sin 27 (y — vot).

Table 5.7 reports the results to the problem with D = 4 x 10~ at time t* = 0.1 s. The
CFL number for this test case is set equal to 0.33 and Pe varies between 67 (¢ = 1) to 4.2
(¢ = 3). Advection is dominant and the HRFV scheme error contributes the most to the
truncation error. In this case, the differences between MP/CORR and MP/NCORR are
not important and larger dispersion time step sizes could be used without loss of accuracy.

An efficient choice in this case could be for example the Eu/Eu scheme with n, = 8.
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TABLE 5.7: Advection-dispersion equation. 2D Example: D = 4.e — 4, ¥ = (0.5,0.5,0)

Euw-Eun,=1 EuEun,=4 EuEun,=8 MP/NCORR MP/CORR
¢ Pe |ego| rate |ega| rate  |ego| rate  |eg2| rate ey  rate
1 67 7.06e-2 7.04e-2 7.00e-2 7.06e-2 6.89e-2
2 17 233e-2 160 2322 1.60 2.29-2 1.61 2322 1.60 2.30e-2 1.58
3 42 6.18e-3 191 6.11e-3 1.92 6.02¢-3 1.93 6.17e-3 191 6.0le-3 1.94

6 Conclusions

In this paper we have presented the extension on tetrahedra of the time splitting technique
developed on triangular meshes. Extension of this technique required careful attention on
the adoption of suitable HRFV schemes in order to preserve second order spatial accuracy.

Indeed, generalizing the MHFE method to three dimensions required only some compu-
tational effort to calculate integrals on three dimensions. On the other hand, the numerical
results confirmed the well-known properties of this scheme (as superconvergence on the
centroids of the cells).

On the contrary, among the generalizations of several F'V schemes developed on two
dimensional unstructured grids, it was difficult to obtain the same degree of robustness
and accuracy as in two dimensions. Therefore, some open question still remain about the
anisotropy of the tetrahedral mesh and the capability of the limiters of properly correcting
the linear reconstruction.

An efficient strategy has been found by applying a second order linear reconstruction
using the least squares method with the limiting procedure based on the Barth-Jespersen
limiters, as the numerical results for advection problems confirm (the LSM_BJ method).

The time splitting technique developed on tetrahedra has employed the MHFE and
the LSM_BJ schemes for discretizing the dispersion and the advection terms, respectively.
Simple test problems have confirmed the time splitting technique as an effective tool for
the solution of the advection-dispersion equation not only in two dimensional triangular

grids but also on tetrahedral meshes.
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A Construction of the RTO0 basis functions in two di-
mensions

In two dimensions and working on triangles 7}, with edges ey, es, e3 and nodes 151, P;, 153,
(we use a similar notation as well as for tetrahedra), the RT0 basis functions are of the

following form:
. ;1T + bil .
Wy = 1=1,2,3.
ayy + Ci

The normal to an edge e; = ]31]32 is derived by the plane:

x y 1
z1 y1 1]=0
T2 y2 1

that is a(x — z1) + B(y — y1) = 0, where
@ =Yz — Y1, B =z — 2.

The normalized components of the normal to e; are then (with no consideration about

inner or outward normal) :

_ .« __ 5
Ve

Property (3.9) applied on two dimensions gives the following result:

/ Wy -y dS = / (ax 4+ b)ng + (ay + ¢)n, dS =

P s+~ 22— )} dot [ o+ emy)
a TNy — —(z—x1)|n,} — dx _ (bng +cny)——dx =
A R TN A " Iny|

B, ¥
a/ﬂ (z1ny + y1ny)
P

1

|ny|

P 1
dx+/~ (bng + cny)— dz =
! L |y

PP
- (me—kcny)M =90
|y

| P Py

a’(xlnz + ylny) — U3

where |]31152\ is the length of the edge e;, that is \/(xg —21)2+ (y2 — 11)? = Va2 + (%

Therefore, we obtain:

[ -7 AS = (@1 + y18) + (b + B) = b
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The 2D classical Galerkin functions N;,i = 1,2, 3, whose gradients are normal to the edges

e;+1 for i = 1,2 while the gradient of N3 is normal to e;, can be written as:

_a;tbhir+ gy

Ni )
2A

where A is the area of the triangle 7;. In particular, the coefficients are:

T2 Y2 T1 W T1 W
a; = ag = — ag =
3 Ys xr3 Y3 T2 Y2
1 1 1
by — Y2 by = — n by — (A
1 ys 1 ys Ly
1 2o 1 1 =
CL = — Cy = C3 — —
1 T3 1 ZT3 1 )

It is simple to see that, for example, for the edge e; the following relations hold:

ary + By, = —as, a = bs, B=cs

Thus
/ @, - iy dS = —asa + (bsh + csc). (A1)

The unknowns are now the coefficients a, b, ¢ of w;. Setting j = 1, from relation (3.9) and
substituting (A.1), we get:
—asa + bsb+c3c=1
—a1a+bb+cic=0 (A.2)
—a2a + byb + coc =0

3 3
Note that Z b, = Zci =0 and that Z?zl a; = 2A, where A is the area of T;:

=1 i=1

1 =1y

1
A= B 1z o
1 z3 ys

Therefore system (A.2) gives the following relationship between a and A:

1
RAa=1oa=——.
a a 2A
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Application of divergence theorem to [, V- @ dz (following the same lines as in the 3D
case) assures that the value of a is the same along the three edges of T; and is positive and
1
lto —.
equal to oA
Again, considering the first equation of system (A.2) and the measure of A, we obtain

for wi:
—— o =_—B
2|A| 2| Al

Similarly, the coefficients for ws and ws are:

by

—Tj 1 —Yj-1
_ J L J
b]' = C; =

B About computation of the advective fluxes in 2D
When calculating the advective flux in two dimensions, we take into account that

Py o o
/ v-ndS = /vxnx + vyny dS & (Va0 + vyny) | PLP| = v.a + v, 0
P

We have approximated velocity with the value on the midpoint of the edge e;.
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