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Abstract

Godunov Mixed Methods on triangular grids has been shown to be an effec-

tive tool for the solution of the two-dimensional advection-dispersion equation. The

method is based on the discretization of the dispersive flux by means of the mixed

hybrid finite element approach, while a high resolution Godunov-like finite volume

scheme discretizes advection. The two techniques are combined together through a

time-splitting algorithm that achieves formal second order accuracy if a corrective

term is added in the finite volume stencil. In this paper we develop and study the

extension of this approach to three dimensions employing tetrahedral elements and

a fully 3D limiter. Particular attention is devoted to the choice of a truly three-

dimensional limiter that preserves second order accuracy in space. To this aim,

several generalizations of two dimensional finite volumes schemes are presented and

their behavior in three dimensions is analyzed. The numerical characteristics of the

proposed method is studied both theoretically and numerically using simple test

problems.

1 Introduction

In this paper we propose a time-splitting approach for the numerical solution of the

advection-dispersion equation in three dimensions, on three-dimensional triangulations. In

two dimensions, this technique has been developed as a reliable tool for producing accurate

numerical approximations of advection-dispersion equations, discretizing indipendently the

advective and dispersive terms with techniques deemed most appropriate [4, 11]. High res-

olution Godunov-type Finite Volume (HRFV) schemes for discretizing advection have been

employed in combination with a Mixed Hybrid Finite Elements (MHFE) scheme for the

discretization of the dispersion term [11, 12, 10, 13]. The extension of this technique to

three dimensions requires careful consideration in particular on the adoption of an ap-

propriate HRFV scheme combined with a truly three-dimensional limiter that preserves

second order accuracy in space.

Extensions of cell centered Finite Volume (FV) schemes for unstructured triangular

meshes to tetrahedra seem to be readily feasible from a theoretical point of view. Prac-

tically, when generalizing these schemes to three dimensional triangulations, application



2

of a truly three-dimensional limiter for modifying the underlying finite volume schemes

in such a way that the resulting method is monotone can drastically reduce the order of

accuracy, yielding poor results. The reason for this behavior is mainly attributed to the

poorly structured tetrahedra that need to be used in a 3D mesh. Methods as proposed

in [5, 2, 7] that work well in two dimensions, generalized to tetrahedra result in a first

order accurate scheme. The limiters proposed to enforce a positivity constraint on these

schemes may be not appropriate when extended to tetrahedra. The great computational

effort to choose the right interpolant for the linear reconstruction (four linear interpolant

in the case of the extension of Durlofsky et al. [5] scheme and five interpolant in the case

of Batten et al. scheme [2]) does not correspond to an improvement in terms of accuracy

of the solution. Even if it has been noted that the use of linear reconstructions does not

always imply second or higher order accuracy even when the solution is smooth [1], such

failure of the above generalized methods requires more investigation.

On the contrary, other schemes seem to be quite suited to be applied on tetrahedra.

Indeed, better results are obtained when applying the so called extremum limiter, pro-

posed by [15], and the limiter introduced by Barth and Jespersen [1]. Application of the

above limiters guarantees that the reconstructed values along the faces of each tetrahedron

well satisfy a local maximum principle. Anyway, the numerical results show that more

confidence can be given to the Barth-Jespersen limiter.

The latter strategy in combination with a linear reconstruction obtained by the least

squares method (LSM) is then applied to the time splitting technique.

The time splitting technique that combines the HRFV scheme based on the LSM

method for advection with the MHFE scheme for dispersion preserves the same accu-

racy, robustness and convergence properties studied and verified in the two dimensional

case. Simple examples of one and two dimensional problems solved on tetrahedral meshes

confirm the theoretical behavior of the proposed scheme.

This paper is organized as follows: in Section 2 we introduce the advection-dispersion

equation governing subsurface contaminant transport and give an overview of the time-

splitting technique. In Section 3 we report on the construction of the three dimensional

MHFE method and describe several computational details. In Section 4 we state an outline

of HRFV schemes with different linear reconstructions and limiters. In Section 5 we discuss
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the numerical results obtained for simple advection, dispersion and advection-dispersion

problems. Finally, in Section 7 we propose some conclusions arising from the work. For

the sake of completeness, in appendix are included some computational notes useful when

working in two dimensions. Practically they recall some details described in Sections 3 and

4.

2 Time splitting algorithm

In the following, we refer to the advection-dispersion equation governing subsurface con-

taminant transport:

∂φc

∂t
+ ~∇ · (~vc−D~∇c) = f on Ω× (0, T ],

c = c0 on Ω× 0,
c = bD on ΓD × (0, T ],
−D~∇c · ~n = bN on ΓN × (0, T ]
(~vc−D~∇c) · ~n = bC on ΓC × (0, T ]

(2.1)

where c is the concentration of the solute, φ(t) is the porosity of the medium, t is time

~v = ~v( ~P , t) is Darcy’s velocity, ~P = (x, y, z) is the Cartesian spatial coordinate vector,

D = D(~v) is the tensor accounting for mechanical dispersion and molecular diffusion, and f

is a source or sink term. Moreover, ~n is the outward normal unit vector, co is concentration

at time 0, bD is the prescribed concentration (Dirichlet condition) on boundary ΓD, bN is the

prescribed dispersive flux (Neumann condition) across boundary ΓN , bC is the prescribed

total flulx of solute (Cauchy conditions) across boundary ΓC (Ω ∈ R3, Γ = ΓD∪ΓN ∪ΓC =
∂Ω and T is the final time of observation). In the following, we set φ = 1, since its variation

with time is neglected in the transport equation, being in general much smaller than the

concentration variations.

Denoting by ~F and ~G the advective and dispersive fluxes, respectively, equation (2.1)

may be written as:

∂c

∂t
+ ~∇ · (~F + ~G) = f on Ω× (0, T ] (2.2)

~F = ~vc (2.3)

~G = −D~∇c (2.4)
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The aim of the time splitting algorithm is to solve equations (2.2) taking into account the

splitting of the advection and the dispersion fluxes into two separate partial differential

equations, respectively.

The time splitting technique, applied on a three dimensional mesh, discretizes the

domain Ω into m tetrahedra Tl, l = 1, . . . ,m. Concentration c is then approximated by:

c ' c̃ =
m
∑

l=1

clψl,

where ψl are P0(Tl) scalar basis functions, taking on the value one on tetrahedron Tl and

zero elsewhere.

The advection-dispersion equation (2.2) is discretized using the time splitting algorithm

that combines a HRFV scheme for the advection term and a MHFE scheme for the dis-

persion term. This technique can be viewed as a predictor-corrector approach as follows.

Multiplying equation (2.2) by ψl and integrating in space and time, with time step ∆t over

the time interval [tk, tk+1], the following semidiscrete equations are obtained:

ck+1l = ckl −
∆t

|Tl|
∫

Tl
[~∇ · (~F (ck+1−θ) + ~G(ck+θ))− fk+θ] d∆, l = 1, . . . ,m

where ckl is the volume average over Tl defined by c
k
l =

∫

Tl
c(·, tk) d∆/|Tl|, |Tl| is the volume

of Tl and a weighted scheme is used for the time quadrature with weighting parameter

θ ∈ [0.5, 1] and ck+θ = θck+1 + (1− θ)ck.
Integration in time is explicit for the FV scheme and implicit for the MHFE method.

We combine explicit and implicit first order Euler scheme (θ = 1) or explicit and implicit

second order mid-point rule (θ = 0.5). Since the stability of the advection discretization

is determined by the CFL constraint, while the dispersive step is not subject to stability

restrictions, different time steps sizes are allowed for advection and dispersion, ∆ta and

∆td, respectively. Thus a finer advection time step together with a coarser dispersive time

step can be employed. The relationship between the two time steps is: ∆td = na∆ta, with

na integer ≥ 1.
The accuracy of the scheme is influenced by the accuracy of the two spatial discretiza-

tion methods employed. Namely, second order in space is obtained at the centroids of the

tetrahedra, as both HRFV and MHFE are there spatially second order accurate. The time-

splitting algorithm, however, introduces an O(∆t) error in the overall procedure, which is
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thus only first order accurate in time [11]. Second order accuracy in space and time can

be achieved with na = 1 when a correction term is added to the FV scheme [10]. It is

straightforward to choose na ≥ 1 when first order schemes in time are employed, and
na = 1 otherwise, to avoid order reduction. The correction term is required to take into

account the influence of dispersion when applying the midpoint rule in the FV scheme and

is simply obtained adding a backward finite difference in the linear reconstruction of the

FV discretization.

Denoting by La and Ld the advective and dispersive numerical fluxes, respectively, the

time splitting technique can be summarized in the following way [11, 12]:

Algorithm 2.1.

For each time step do:

• advection step: for each Tl solve na times with the explicit FV scheme (na ≥ 1 when
θ = 1, na = 1 otherwise), using ∆ta as the time step, determining the predictor

concentration ĉk+1l

1. c
(0)
l := c

k
l

2. do ia = 0, na − 1

c
(ia+1)
l = c

(ia)
l +∆ta

[

La(c
(ia+1−θ)
l )

]

(2.5)

end do

3. ĉk+1l := c
(na)
l

• dispersion step: for each Tl solve with implicit MHFE method using ĉk+1l as initial

condition

ck+1l = ĉk+1l +∆td
[

Ld(c
k+θ
l )

]

(2.6)

with ∆td = ∆t = na∆ta, obtaining the final approximation c
k+1
l .

3 MHFE discretization

The MHFE formulation applied to the discretization of the dispersive step extends to tetra-

hedra the algorithm applied to triangles in the two dimensional case [9, 11]. Given the
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tetrahedral mesh, the dispersive flux ~G is approximated on tetrahedron Tl as ~G ≈
4
∑

j=1

gjl ~wjl

where ~wjl are the discontinous RT0 vector basis functions. The MHFE formulation intro-

duces the unknown Lagrange multiplier expressed as λ =
n
∑

j=1

λjµj , where n is the number

of faces of the mesh, λj represents the trace of the concentration on the face fj and µj are

piecewise constant basis functions.

Set the time step ∆td (∆t) on the time interval [t
k, tk+1], discretization of equation (2.6)

by MHFE in space and the θ-weighted scheme in time yields:
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bN















(3.1)

where A = diag[A1, . . . , Am], B = diag[B1, . . . , Bm] and

Al = (aik) =
∫

Tl
D−1l ~wil · ~wkl d∆

Bl = (bi) =
∫

Tl

~∇ · ~wil d∆

Q = (qrj) =
∫

∂Tl
µj ~wil · ~nl dΓ

g = (gr) = gil

f = (f̂l) =
∫

Tl
fl d∆

where i, k = 1, 2, 3, 4, j = 1, . . . , n, r = 4(l − 1) + i and c = (cl), λ = (λj), and bN =
(bNj) where bNj assumes a non vanishing value only if there is a Neumann condition on

a boundary face fj . Setting P
k = diag[pk1, . . . , p

k
m] with p

k
l = φkl |Tl|/∆t then P ′ =

P k+1

θ
and P̃ = P ′ − P k+1 + P k. If pkl is not dependent on time, then P ′ = P̃ . The vector ~nl

represents the outward normal to Tl. Along each face of ej Tl it is expressed as ~njl.

A final system of equations for the unknown λ is obtained:

QTMQλk+θ = QTSH−1(f + P̃ ĉk+1)− bN (3.2)

where H = D′ + BTA−1B, S = A−1B, and M = A−1 − SH−1ST . The system is symmet-
ric and positive and can be solved efficiently by the Preconditioned Conjugate Gradient

method. Once λk+θ is calculated, ck+1 is easily evaluated.
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3.1 Details about integrals computation

Computation of the entries aik, bi, qrj of system (3.1) requires knowledge of some geomet-

rical relationships and of the RT0 basis functions on tetrahedra. In the following we will

consider a generic tetrahedron T (or Tl), with faces e1, e2, e3, e4 (e1l, e2l, e3l, e4l, respectively)

and vertices (or nodes) ~P1, ~P2, ~P3, ~P4.

3.1.1 Surface through ~P1, ~P2, ~P3

Given a face ei with vertices ~Pj = (xj, yj , zj), j = 1, 2, 3, the surface passing through ~P1,

~P2, ~P3 can be written as:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (3.3)

Equation (3.3) is equivalent to
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1 0
x1 y1 z1 1

x2 − x1 y2 − y1 z2 − z1 0
x3 − x1 y3 − y1 z3 − z1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0⇔

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x− x1 y − y1 z − z1
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0⇔

⇔ α(x− x1) + β(y − y1) + γ(z − z1) = 0 (3.4)

where

α =

∣

∣

∣

∣

∣

∣

∣

y2 − y1 z2 − z1
y3 − y1 z3 − z1

∣

∣

∣

∣

∣

∣

∣

= (y2 − y1)(z3 − z1)− (y3 − y1)(z2 − z1),

β = −

∣

∣

∣

∣

∣

∣

∣

x2 − x1 z2 − z1
x3 − x1 z3 − z1

∣

∣

∣

∣

∣

∣

∣

= (x3 − x1)(z2 − z1)− (x2 − x1)(z3 − z1),

γ =

∣

∣

∣

∣

∣

∣

∣

x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣

∣

∣

∣

∣

∣

∣

= (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1).

Alternatevely, α, β, γ can also be written as:

α =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y1 z1

1 y2 z2

1 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, β = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 z1

1 x2 z2

1 x3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, γ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Lemma 3.1. It is straightforward to prove that

x1α + y1β + z1γ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.5)

Proof. A first way to prove (3.5) is by direct substitution of the values defining α, β

and γ.

A second way is given by writing the surface (3.3) through ~P1, ~P2, ~P3 as

x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1 z1 1

y2 z2 1

y3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− y

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 z1 1

x2 z2 1

x3 z3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0⇔

⇔ αx+ βy + γz −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (3.6)

Since the same surface can be written as (3.4), by comparison we obtain relation (3.5).

3.1.2 Normal to the surface

Introducing ~n, the normal to the surface, that is to a face of the tetrahedron, its normalized

components can be written as:

nx =
α√

α2 + β2 + γ2
, ny =

β√
α2 + β2 + γ2

, nz =
γ√

α2 + β2 + γ2
.

Therefore the surface equation (3.4) becomes:

nx(x− x1) + ny(y − y1) + nz(z − z1) = 0 (3.7)

The normal ~n must be external to the tetrahedron. At the moment, we consider ~n as

external, next we will see the difference between internal and external normal and how to

choose the right one.
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3.1.3 Integrals computation

An other useful consideration is concerning the computation of a surface integral. Given

the surface S = S(x, y, z) such that z = f(x, y), z depending on x and y, with (x, y) ∈ D,
D being a 2D section of S, then

∫

S
g(x, y, z) dS =

∫

D
g(x, y, f(x, y))

√

1 + f 2x + f
2
y dx dy.

In the case of S = ei, from equation (3.7) we obtain

z = z1 −
nx
nz
(x− x1)−

ny
nz
(y − y1)

and
∫

ei
g(x, y, z) dS =

∫ ∫

D
g(x, y, z1 −

nx
nz
(x− x1)−

ny
nz
(y − y1))

1

|nz|
dx dy. (3.8)

3.1.4 RT0 basis functions

For each tetrahedron Tl, l = 1, . . . . ,m, with faces e1l, e2l, e3l, e4l, the RT0 basis functions

~wil (i = 1, 2, 3, 4) are of the following form:

~wil =















ailx+ bil

aily + cil

ailz + dil















and satisfy the following property:

∫

eil
~wjl · ~nil dS = δij =











1 if j = i

0 otherwise
(3.9)

where ~nil is the outward normal to eil. For sake of simplicity, we will omit the subscripts

il when referring to the coefficients a, b, c, d.

Taking into account relation (3.8), computation of the integral
∫

ei
~wjl · ~nil dS is given

in the following way (we consider a face with nodes (x1, y1, z1), (x2, y2, z2), (x3, y3, z3)):

∫

ei
~wjl · ~nil dS =

∫

ei
(ax+ b)nx + (ay + c)ny + (az + d)nz dS =

a
∫

D
{xnx + yny + [z1 −

nx
nz
(x− x1)−

ny
nz
(y − y1)]nz}

1

|nz|
dx dy +

∫

D
(bnx + cny + dnz)

1

|nz|
dxdy =

a
∫

D
(x1nx + y1ny + z1nz)

1

|nz|
dx dy +

∫

D
(bnx + cny + dnz)

1

|nz|
dx dy =

a(x1nx + y1ny + z1nz)
|D|
|nz|
+ (bnx + cny + dnz)

|D|
|nz|
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Table 3.1: Vertices and opposite node of each face.
face vertices opposite

e1 ~P1 ~P2 ~P3 ~P4
e2 ~P2 ~P3 ~P4 ~P1
e3 ~P3 ~P4 ~P1 ~P2
e4 ~P4 ~P1 ~P2 ~P3

where |D| is the area of the triangle with vertices (x1, y1), (x2, y2), (x3, y3), that is the
absolute value of

1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2
γ

Therefore
|D|
|nz|
=
1

2

√

α2 + β2 + γ2 and integral
∫

ei
~wjl · ~nil dS becomes:

∫

ei
~wjl · ~nil dS =

a

2
(x1α + y1β + z1γ) +

1

2
(bα + cβ + dγ)

Let us consider a generic tetrahedron T with faces and vertices as described in Table 3.1.

Therefore, taking into account, for example, the face e2 opposite to node P1, we can write:

∫

e2
~wj · ~n2 d =

a

2
(x2α + y2β + z2γ) +

1

2
(bα + cβ + dγ)

where α, β, γ are the components of the normal vector to the face e2. Note that now we

have x2, y2 and z2 in the right hand side of the previous relation.

From the literature, it is known that the classical 3D Galerkin function

N1 =
a1 + b1x+ c1y + d1z

6V

is such that its gradient is normal to the face e2. The gradient is: ~∇N1 =
1

6V
(b1, c1, d1),

with V the volume of the tetrahedron. Therefore, with reference to face e2, we can set:

α = b1, β = c1, γ = d1.

Moreover, ~∇Ni is normal to face ei+1, i = 1, 2, 3, while ~∇N4 is normal to e1. In
particular, the coefficients ai, bi, ci, di, i = 1, 2, 3, 4 of the Galerkin functions are as described
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in the following:

a1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 y2 z2

x3 y3 z3

x4 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a2 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x3 y3 z3

x4 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x4 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a4 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y2 z2

1 y3 z3

1 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y1 z1

1 y3 z3

1 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b3 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y1 z1

1 y2 z2

1 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 y1 z1

1 y2 z2

1 y3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x2 z2

1 x3 z3

1 x4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c2 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 z1

1 x3 z3

1 x4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 z1

1 x2 z2

1 x4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c4 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 z1

1 x2 z2

1 x3 z3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d1 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x2 y2

1 x3 y3

1 x4 y4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x3 y3

1 x4 y4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d3 = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x4 y4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

d4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Recalling relation (3.6) and substituting the values of b4, c4, d4, a4, the surface through

~P1, ~P2, ~P3 can be written as:

b4x+ c4y + d4z + a4 = 0

From comparison with equation (3.4) we obtain:

αx1 + βy1 + γz1 = −a4, α = b4, β = c4, γ = d4

Thus
∫

e1
~wj · ~n1 dS = −

a

2
a4 +

1

2
(b4b+ c4c+ d4d). (3.10)

The unknowns are a, b, c, d of ~wj. Setting j = 1, from relation (3.9) we obtain:
∫

e1
~w1 · ~n1 dS = 1,

∫

e2
~w1 · ~n2 dS = 0,

∫

e3
~w1 · ~n3 dS = 0,

∫

e4
~w1 · ~n4 dS = 0.

Substituting (3.10) we get:






































−a4a+ b4b+ c4c+ d4d = 2
−a1a+ b1b+ c1c+ d1d = 0
−a2a+ b2b+ c2c+ d2d = 0
−a3a+ b3b+ c3c+ d3d = 0

(3.11)
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Solution of system (3.11) gives the values of a, b, c, d of w1. Similar relations hold for the

other basis functions. It is interesting to observe that from the previous system, we obtain:

−
4
∑

i=1

aia+
4
∑

i=1

bib+
4
∑

i=1

cic+
4
∑

i=1

did = 2 (3.12)

Is it straightforward to prove that
4
∑

i=1

bi =
4
∑

i=1

ci =
4
∑

i=1

di =0. Indeed,

4
∑

i=1

bi = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 y1 z1

1 1 y2 z2

1 1 y3 z3

1 1 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

(similar considerations hold for the summations in ci and di).

Instead, it is very simple to prove that

4
∑

i=1

ai = 6V

where V is the volume of the tetrahedron defined as

V =
1

6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Therefore equation (3.12) becomes:

−6V a = 2

giving a relationship between a and the volume V :

a = − 1
3V

. (3.13)

Now we are able to distinguish between inner and outward normal. By the divergence

theorem we get:

∫

T

~∇ · ~w1 dx dy dz =
∫

∂T
~w1 · ~n dS =

4
∑

i=1

∫

ei
~w1 · ~ni dS = 1
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But,
∫

T

~∇ · ~w1 dx dy dz =
∫

T
(
∂ ~w1
∂x
+
∂ ~w1
∂y
+
∂ ~w1
∂z
) dV =

∫

T
3a dV = 3a|V |

Thus

3a|V | = 1 (3.14)

and a =
1

3|V | must be a positive value. Relation (3.13) between a and V is written with
no consideration about the sign of a. We are now able to conclude that if computation of

a from system (3.11) gives a negative value for a, we have worked with an inner normal.

In this case, it will be sufficient to change the signs of a, b, c, d and to consider −~w1. If a
is positive, then the normal is external.

These results are in accordance with the following statement, useful to decide if the

normal is external or not. Given ~∇N1 (the normal to the face e2) and the barycentrum
of the tetrahedron T , ~G = (xG, yG, zG), we consider the vector passing through ~G and a

vertex of the face, for example ~P4: ~G~P4 = (x4 − xG, y4 − yG, z4 − zG). The inner product
~G~P4 · ~∇N1 is equal to b1(x4 − xG) + c1(y4 − yG) + d1(z4 − zG). If ~G~P4 · ~∇N1 > 0 then the
normal is external, otherwise we are considering an inner normal.

From a computational point of view, relation (3.13) says that the coefficient ail is

equal along the four faces of tetrahedron Tl. Set a as the positive value a =
1

3|V | , the
coefficient b, c, d are readily computed taking into account the first equation of system

(3.11) (substituting the value of a and regardless of the sign) and the definition of the

volume of a tetrahedron:

On the one hand, we have

−a4
1

3|V | + b4b+ c4c+ d4d = ±2 (3.15)

On the other and

6V = a4 + x4b4 + y4c4 + z4d4

By comparison, we obtain for the basis ~w1:

b =
−x4
3|V | , c =

−y4
3|V | , d =

−z4
3|V | .

The sign of (3.15) will be positive if V is negative and negative otherwise.
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At the same way, the coefficients of ~wj , j = 2, 3, 4 are computed as:

bj =
−xj−1
3|V | , cj =

−yj−1
3|V | , dj =

−zj−1
3|V | .

It is clear, that computation of a, b, c, d parameters is now very easily and not expensive.

3.1.5 Computation of A, B, Q

With the above considerations and using the same notations of system (3.1), we are able

to compute the values of matrices A, B and Q.

The values of Q are qrj =
∫

∂Tl
µj ~wil · ~nl dΓ. With simple calculations we get:

qrj = µj

The non vanishing entries of matrix A aik =
∫

Tl
D−1l ~wil · ~wkl d∆ are computed by

applying the Gauss-Lobatto formula to the following development:

aik =
∫

Tl

(aix+ bi)(akx+ bk)

Dxx
+
(aiy + ci)(aky + ck)

Dyy
+
(aiy + di)(aky + dk)

Dzz
d∆

In the previous formula, matrix Dl is a diagonal matrix with entries Dxx, Dyy, Dzz.

The diagonal entries of matrix B are equal to 1. Indeed

∫

Tl

~∇ · ~wil d∆ =
∫

Tl
(
∂ ~wil
∂x
+
∂ ~wil
∂y
+
∂ ~wil
∂z
) dV =

∫

Tl
(ai + ai + ai) dV = 3ai|V | = 1

We have used equality (3.14).

4 HRFV discretization

Equation (2.5) can be explicitly written as:

φk+1l ck+1l = φkl c
k
l −
∆t

|Tl|
∫

Tl

~∇ · (~F (ck+1−θl ) d∆ (4.1)

with ` = 1, . . . ,m, and is solved using as initial condition the solution calculated at the

and of the previous time step. In the two dimensional formulation, the discretization of

the equation corresponding to (4.1) was obtained by means of the Finite Volume scheme

on unstructured triangular grid, as developed by [5] and then modified by [8]. From a

theoretical point of view, this scheme can be readily generalized to tetrahedra. In practice,
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we observed that extension of two dimensional limiters may drastically reduce the order

of accuracy, yielding poor results. Only few limiters preserve second order accuracy, as we

will see in the numerical results. The reason for this behavior is mainly attributed to the

poorly structured tetrahedra that need to be used in a three dimensional mesh.

In the following, we introduce the FV formulation and describe several HRFV methods

developed on triangular grids in order to guarantee satisfaction of appropriate maximum

principle. We directly present their generalization to three dimensions and the numerical

results will be useful to decide the more suitable to be used in the time splitting technique.

Application of the divergence theorem to the right hand side of (4.1), yields

φk+1l ck+1l = φkl c
k
l −
∆t

|Tl|
∫

∂Tl

~F (ck+1−θl ) · ~nl dS = φkl ckl −
∆t

|Tl|
4
∑

j=1

∫

ejl

~F (ck+1−θl ) · ~njl dS (4.2)

Approximation to the four integrals (advective fluxes) is given by introducing the numerical

fluxes HGjl :

φk+1l ck+1l = φkl c
k
l −
∆t

|Tl|
4
∑

j=1

HGjl (4.3)

where HGjl is the two-point Lipschitz monotone flux (the Godunov flux) depending on the

cell averaged values of the concentration variable evaluated on the right side and on the

left side of the face ej , j = 1, . . . , 4 of Tl at the time t
k+1−θ (in the following we omit the

time index for sake of clarity). Therefore, HGjl can be defined as:

HGjl = H(cRj, cLj, njl)T jl (4.4)

where cRj and cLj are the reconstruction of c on the right and left side of the face ej of cell

Tl and T jl is the surface area of face ej. High order reconstruction is obtained when the

reconstruction is not given by piecewise constant functions (the classical Godunov scheme)

but uses a piecewise linear reconstruction together with a limitation procedure.

Using formula (3.8) and applying the components of the normal to the surface ~n de-

scribed in terms of α, β and γ in Section 3 the components of the advective fluxes along

each face become:

∫

ei

~F (c) · ~njl dS =
1

2
(F (c)xα + F (c)yβ + F (c)zγ)

Computation of the values of α, β, γ by formulae described in 3.1.1 does not take into

account the sign of the normal, and we are interested to an outward normal. To this aim,
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we consider the inner product between the normal and the vector passing through the

barycentrum of the tetrahedron and a vertex of the face. If the inner product is positive,

then the normal is external, otherwise we are considering an inner normal and change all

the sign of α, β, γ. The above investigation is obviously carried out before the advective

flux is computed. In the following, we denote as αj, βj, γj , the components of the normal

of the face ej.

More in detail ~F (c) = ~vc where ~v represents the velocity field. Using the midpoint

rule for integrals, the value of concentration on ej is approximated with the value on its

centroid, cjl, and the previous integral is approximated as:

1

2
cjl(vxαj + vyβj + vzγj)

The numerical flux HGjl takes into account the sign of the integral

1

2
(vxαj + vyβj + vzγj)

(in practice we look at the sign of the inner product ~vjl · ~njl). If this quantity is positive,
we consider the reconstruction at the right cRl, otherwise cLl is chosen. In this way the

numerical flux HGjl is given by

HGjl =
1

2
cXl(vxαj + vyβj + vzγj) ≈

1

2
cjl(vxαj + vyβj + vzγj) ≈

∫

ej

~F (c) · ~njl dS

where cXl may be cRl or cLl depending on the choice carried out.

To obtain second order approximation in space, cRj and cLj are reconstructed component-

wise from the cell averaged data in the following form:

cXj = cl + ~rjl · ~∇(Ll) X = R,L (4.5)

where ~rjl is the vector from the centroid of cell Tl to the centroid of the face ej and ~∇(Ll) is
the gradient of a linear reconstruction Ll of c on Tl. Ll is also called the gradient operator.

Selecting Ll to be the gradient operator in (4.5) leads to a second order accurate

method (therefore a linear solution is modelled exactly) but doesn’t prohibit overshoots

and undershoots at the centroids of the tetrahedra faces. Therefore non-linear correction

factors called ’limiters’ have to be introduced in order to satisfy a local maximum principle.

Usually a limited scheme can be expressed quite simply in two stages as:
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1. construct one or more candidates for the linear reconstruction

2. limit the gradient operator chosen from the candidates.

The first step defines a finite set of possible directions of the reconstructed gradient,

and the second step chooses one of the directions and bounds the magnitude of the slope.

4.1 The Durlofsky scheme

Extension to tetrahedra of the method developed in [5] is quite easy. In each tetrahedron

Tl, four candidates for Ll, designed as L
j
l , j = 1, 2, 3, 4 are generated. Indeed, we consider

the four neighboring tetrahedra, e.g. Tp, Tq, Tr, Ts, with centroids ~Pp, , ~Pq, ~Pr, ~Ps and

construct four linear interpolants. The first candidate L1l interpolates

(~Pl, cl) (~Pp, cp) (~Pq, cq) (~Pr, cr)

L2l is the interpolation of

(~Pl, cl) (~Pq, cq) (~Pr, cr) (~Ps, cs)

L3l and L
4
l interpolate

(~Pl, cl) (~Pr, cr) (~Ps, cs) (~Pp, cp)

and

(~Pl, cl) (~Ps, cs) (~Pp, cp) (~Pq, cq)

respectively. If a face, say ei, of Tl is a boundary face, we use ( ~Pil, c(~Pil, t)) instead of - say

- (~Pp, cp) to build the linear interpolation, where ~Pil is the centroid of the face ei.

We compute the magnitude of the gradient of each Ljl , putting:

|Ljl | =

√

√

√

√(
∂Ljl
∂x
)2 +

∂Ljl
∂y
)2 +

∂Ljl
∂z
)2 j = 1, 2, 3, 4.

The following procedure for the choice of Ll is used

Algorithm 4.1 (Durlofsky procedure).

1. Select the Ljl for which |Ljl | is maximum
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2. Verify the following conditions

Ljl (
~Plp) is between cl and cp

Ljl (
~Plq) is between cl and cq

Ljl (
~Plr) is between cl and cr

Ljl (
~Pls) is between cl and cs

(4.6)

where ~Plp denotes the centroid of the face in common with the Tp tetrahedron. If

all conditions (4.6) are satisfied then the procedure is finished and the Ljl is the

appropriate Ll.

3. If the Ljl above results in overshoots or undershoots at any one of the four midpoint

(that is the above conditions are not satisfied), then select the Ljl for which |Ljl | is the
second largest and test conditions (4.6) again. If this Lil does not satisfy (4.6), select

the candidate for which |Ljl | is the third largest and repeat the procedure. Again, if
(4.6) are not satisfied select the interpolant for which |Ljl | is the minimum.

4. If no Ljl satisfies the requirements (4.6), then choose Ll = cl, that is first order

reconstruction.

Note that the original algorithm [5] does not include the last step of the above de-

scription. On the other hand, Liu develops this scheme in two dimensions in the following

way [8]: if step 2 of algorithm 4.1 is not verified for any linear interpolant, a local upper

and lower bounds are computed taking into account the triangles having at least a common

point with the reference triangle. In this way, other conditions should be satisfied, starting

from the linear interpolant for which |Ljl | is the maximum to the candidate with minimum
gradient. If these new conditions are not satisfied, the Liu scheme operates with the step

(4) described in algorithm 4.1. In three dimensions, the Liu scheme appears too much

complicated in the computation of the local upper and lower bounds by considering the

nearby edges (the equivalent of the nearby points in two dimensions), that is the tetrahedra

having an edge in common with the reference tetrahedron. But Liu’s choice carried out

in step 4 when conditions (4.6) are not satisfied appears suitable to avoid overshoots and

undershoots. For this reason it is added in the algorithm 4.1.
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4.2 The Min limiter scheme

This method is described in [5] as a procedure analogous to the min limiter in second-order

ENO (essentially non-oscillatory) schemes [6]. This corresponds to the selection of the Ljl

for which |Ljl | is minimum. At extrema, that is when cl is an extremum relative to the
values of c at the centroids of the neighbouring tetrahedra, cp, cq, cr and cs, a first-order

approximation is used.

4.3 The average scheme

To verify the effects due to the limiter in the Durlofsky and Min limiter schemes, the

reconstruction is calculated as average of the four candidates for the construction of Ll.

Therefore it is high order accurate but may produce oscillatory approximation when dis-

continuities are presents. Indeed, using the previous notation, Ll is set as

Ll =
L1l + L

2
l + L

3
l + L

4
l

4

4.4 The Limited Central Difference scheme

The Limited Central Difference (LCD) scheme is presented in [7] for unstructured trian-

gular meshes. Its extension to three dimensions can be described in the following way.

Construction of the linear interpolant requires the concentration values of the centroids of

the four neighbouring tetrahedra of the reference one. Let L5l be the interpolant of the

four pairs of point and corresponding value

(~Pp, cp) (~Pq, cq) (~Pr, cr) (~Ps, cs)

If the reference tetrahedron has any boundary face, we operate as described previously in

the construction of the Durlofsky method.

The LCD scheme limits L5l by setting

αv =



































max (cv − cl, 0)
~rvl · ~∇(L5l )

if ~rvl · ~∇(L5l ) > max (cv − cl, 0)
min (cv − cl, 0)
~rvl · ~∇(L5l )

if ~rvl · ~∇(L5l ) > min (cv − cl, 0)

1 otherwise

v = p, q, r, s
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where ~rvl is the vector from the centroid of Tl to the centroid of the face between cells Tl

and Tv and calculating the LCD gradient operator as

Ll = αL
5
l = min

v=p,q,r,s
αvL5l .

4.5 The Maximum Limited Gradient scheme

The Maximum Limited Gradient (MLG) scheme is proposed in [2] and can be described

as a combination of the methodologies proposed for the Durlofsky and LCD schemes.

It takes all five linear interpolants (the candidates for the reconstruction of the Durlofsky

scheme and the L5l operator), limits each one in turn in the manner of the LCD scheme

and then takes Ll to be the remaining operator with largest gradient.

4.6 The Least Square method with extremum limiter

This method has been proposed directly for tetrahedra in [15]. where Favre-filtered com-

pressible Navier-Stokes equations on a three dimensional unstructured grid of tetrahedral

cells are solved.

The reconstruction Ll is computed by minimizing the functional

S(Ll) = (Ll(~Pl)− cl)2 +
∑

v

(Ll(~Pv)− cv)2 (4.7)

where v = p, q, r, s.

The minimization is performed by the method of the Least Squares. Then, the approx-

imation of the centroid of each face of Tl is calculated as

coldvl = cl + ~rvl · ~∇(Ll) v = p, q, r, s

and the extremum limiter is formulated as Φ

Φ =



























0 if min (cl, cv) ≤ coldvl ≤ max (cl, cv)
max (cl, cv)− coldvl if coldvl > max (cl, cv)

min (cl, cv)− coldvl if coldvl < min (cl, cv)

The limited value of cvl is given by:

cvl = c
old
vl + Φ v = p, q, r, s.
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The extremum limiter gets its name from the fact that it does not limit the gradients,

but directly limits the values of the variables on both sides of the face.

4.7 The Least Square method with the Barth-Jespersen limiter

The gradient operator is obtained minimizing the functional (4.7) by the method of the

least squares and is limited by applying the Barth-Jespersen slope limiter [1].

We set

coldvl = cl + ~rvl · ~∇(Ll) v = p, q, r, s (4.8)

and compute

cvl = cl + Φl~rvl · ~∇(Ll) v = p, q, r, s (4.9)

where Φl = min (Φl1,Φl2,Φl3,Φl4) and

Φjl =



































1 if coldvl − cl = 0,
min (1,

cmaxl − cl
coldvl − cl

) if coldvl − cl > 0,

max (1,
cminl − cl
coldvl − cl

) if coldvl − cl < 0.

(4.10)

In the previous formula, cminl = min (cl,
4
min
v
cv) and c

max
l = max (cl,max

x
cx). The applica-

tion of the slope limiter guarantees that a local maximum principle condition is satisfied.

4.8 Time integration

The time integration is accomplished via a first order explicit Euler scheme or a second order

procedure (we choose between midpoint rule in time, Heun scheme and Runge scheme).

The midpoint rule in time is applied when the FV scheme is used in combination with

the MHFE scheme in the time splitting technique.

Observe that, in this case, the time-splitting technique introduces an error proportional

to the time step and the overall scheme is only first order accurate if no special care is

considered in the definition of the numerical flux approximation. Expanding in Taylor series

the linear reconstruction of cl at time t
k+1/2 is approximated as L

k+1/2
l = Lkl +(∆t/2)∂c

k
l /∂t.

Second order of accuracy is obtained if ∂ckl /∂t is evaluated taking into account not only the

advective flux but also the dispersive one. This can be implemented by means of backward
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finite differencing of the time derivative using the values of concentration at the previous

time tk−1, obtaining L
k+1/2
l = Lkl + (c

k
l − ck−1l )/2. With this correction term, second order

accuracy in time is recovered as proved in [10] for two-dimensional triangular grids. The

theorem proved for triangles can be easily extended to tetrahedra.

5 Numerical results

In this Section we report several numerical results and convergence rates obtained in the

simulation of simple:

• advection equations - to test and compare the different HRFV schemes described
above

• dispersion equations - to test the extension of the MHFE method to tetrahedra

• advection-dispersion problems - applying the more suitable HRFV scheme with the
MHFE algorithm in the time splitting technique, to verify that the time splitting

technique works well also on tetraedral meshes and can be used to solve more com-

plicated problems.

In combination with advection and advection-dispersion equations, varying values of

CFL are considered. When testing the latter equations, also Peclet (Pe) numbers are

calculated.

The CFL number is associated to the stability of the FV scheme and is defined for each

tetrahedron Tl as

CFL = ∆t sup
Tl
|Tl|
sup |d

~F

dc
|

where Tl =
4
∑

j=1

T jl is the total surface area of Tl.

The Peclet number represents the ratio between the advective and the dispersive term

and can be defined in our case as [14]

γ = |D|∆t sup 1|Tl|
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where |D| is the norm of tensor D. Low Peclet numbers indicate that dispersion is pre-
dominant over advection, and vice versa.

About time integration, we employ the Heun scheme for advection problems, the Eu-

ler and Crank-Nicolson scheme for dispersion equations, while, for advection-dispersion

equations, we use the first order accurate in time and second order in space version of the

time-splitting algorithm using a number na (≥ 1) of advective time steps per dispersive
time step, and the second order accurate in time and space version of the time-splitting

algorithm showing that introduction of the correction term in the advection step is crucial

to preserve accuracy in time.

We consider one-dimensional and two-dimensional problems solved in three-dimensional

grid systems.

More in detail, for one-dimensional problems we consider the domain [0, 1]× [0, 0.1]×
[0, 0.1] discretized into three different grid levels. The coarsest level (` = 1) is obtained

by uniformly subdividing the domain in triangular prisms that are further subdivided

into tetrahedra, obtaining a triangulation with 480 tetrahedra, 189 nodes, and 1128 faces.

Uniform subdivision of the prisms yields the next finer meshes, with the finest level formed

by 30720 tetrahedra, 6561 nodes, and 64128 faces.

For two-dimensional problems the domain is [0, 1]× [0, 1]× [0, 1] and is discretized into
three different grid levels, applying the same grid generation procedure employed for the

one-dimensional test cases. At the coarsest level (` = 1) we have eight subdivisions along

the y-axis and eight along the z-axis, defining a set of triangular prisms that are again

further subdivided into three tetrahedral cells. The coarsest level (` = 1) is characterized

by 3072 tetrahedra, 729 nodes and 6528 faces, the second level by 24576 tetrahedra, 4913

nodes and 50688 faces, while the finest level by 196608 tetrahedra, 35937 nodes and 399360

faces.

Note that in the case of costant coefficients of advection-dispersion equations, Pe de-

creases by a factor of 4 in passing from a coarser to a finer level.

The numerical convergence of the scheme is evaluated by calculating L2 relative errors

at different grid levels (|e`,2|) and evaluating the rates of convergence at each level.
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The L2 error norm is calculated using the following formula:

|e`,2| =

√

√

√

√

m
∑

l=1

(c(~Pl, tk)− ckl )2
√

√

√

√

m
∑

l=1

c(~Pl, t
k)2

, (5.1)

where c( ~Pl, t
k) is the analytical solution on the centroid of Tl at time t

k and ckl is the

corresponding numerical solution.

5.1 Advection equations

To compare the accuracy and robusteness of the proposed HRFV schemes, it is sufficient

to test simple advection equations whose exact solutions are: x− vxt, sin 2π(x− vxt), and
sin 2π(x− vxt) sin 2π(y − vyt). To this aim, appropriate Dirichlet boundary conditions are
imposed. Velocity is set equal to ~v = (1, 0, 0) for the one-dimensional tests and equal to

~v = (0.5, 0.5, 0) for the two-dimensional example. We will refer to the above experiments

as TEST1, TEST2 and TEST3, respectively.

In addition to the algorithms proposed in Section 4, we also consider the schemes in

which no limiter is applied to the interpolant introduced by the LCD method (the L5l

operator) and to the interpolant derived by the least squares minimization, the methods

obtained limiting the L5l operator by applying the extremum and the Barth-Jespersen

limiters respectively, and the method obtained applying the limiter proposed in the LCD

scheme to the operator of the least squares minimization. In this way, we can observe the

effects of the limiters on different operators.

Therefore we will consider the following schemes:

• Durlofsky method (DUR)

• min limiter method (MIN)

• average method (AVG)

• limited central difference method (LCD)

• no limited central difference method (NLCD)



25

• limited central difference method with extremum limiter (LCD EXTR)

• limited central difference method with Barth-Jespersen limiter (LCD BJ)

• maximum limited gradient scheme (MLG)

• least square method with extremum limiter (LSM EXTR)

• least square method with Barth-Jespersen limiter (LSM BJ)

• least square method with LCD limiter (LSM LCD)

• no limited least square method (NL LSM)

A time step ∆t = 1 × 10−3 is used at the coarsest mesh of the one-dimensional tests
and halved in passing to the next finer level. The CFL is kept constant at 0.29. In the

two-dimensional example the time step is ∆t = 4× 10−3 at the coarsest mesh (and halved
in passing to the next finer level), and the CFL is equal to 0.33.

Table 5.1 shows the results obtained for the three tests relative to a final time tk = 0.1

s (TEST1 and TEST3) and tk = 1 s (TEST2).

It appears that DUR, LCD, MLG and LSM LCD display first order of accuracy. An

explanation of this order reduction is due to the effect of the limiter applied, leading to

the conclusion that HRFV methods working well in two dimensional grids are not readily

generalized to three dimension preserving high spatial accuracy. AVG, NLCD, NL LSM,

where no limiter is applied, give the expected convergence rates, confirming that the lim-

iters do not work well in the previous methods. The MIN method give satisfactory results

for the one-dimensional examples but display first order accuracy in TEST3. LCD EXTR

and LSM EXTR are of second order in TEST1 and TEST2 and reach about 1.40 conver-

gence rate in TEST3. Note that the results obtained with both methods are very similar,

therefore the limiter effects are dominant to respect the choice of the gradient operator.

Finally, LCD BJ and LSM BJ are of second order in the one-dimensional tests and achieve

about 1.80 order accurate in TEST3 (about 1.85 is the rate observed when no limiter is

applied). As before, note that there is no relevant difference between the two methods.

Displayed in Figure 5.1 is a log-log plot of L2 error obtained for TEST3 versus the spacing
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between adiacent nodes of the different meshes (theoretical first and second order errors

are also plotted to better compare the differents convergence rates).

From the numerical results we can conclude that extension to three dimensions of limiter

techniques working satisfactorily in two-dimensions is not so readily as suggested by many

authors. The use of linear reconstructions does not always imply second order accuracy

even when theoretical considerations seem to suggest high order reconstruction. Three

dimensional reconstruction requires careful attention when working on tetrahedral meshes.

First order of accuracy achieved by limited schemes may be due to the poorly structured

tetrahedra that need to be used in a three dimensional mesh. The Barth-Jespersen limiter

seems to overcome this effects and appears as the more efficient between those proposed.

Some open question still remain about the anisotropy of the tetrahedral mesh and the

capability of the above limiters of properly correcting the linear reconstruction along all

the faces of each tetrahedron. This topic will be discussed in future research.

When applying the time splitting technique, we will operate with the LSM BJ scheme.

5.2 Dispersion equations

As first test problem we consider the one-dimensional problem whose exact solution is given

by c = 2 exp (−π2Dt) sin (πx). The dispersion coefficient D is set equal to D = 1× 10−1.
As initial time step is used the value ∆td = 1 × 10−2. Convergence results of the MHFE
method in combination with the implicit Euler (Eu) or Mid-point (MP) discretization in

time are reported in Table 5.2 at the times tk = 0.1 and tk = 1 s. Like predicted from

theory, first order of convergence is observed when using the Eu scheme and second order

when using the MP scheme.

As two dimensional example we consider the steady-state problem associated to the

exact solution c = sin (πx) sin (πy). This test is useful to ascertain superconvergence at

the centroids of the tetrahedra. Indeed, the results confirm the theory, as displayed in

Table 5.3.
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Table 5.1: Advection tests.

method ` TEST1 TEST2 TEST3
0.1 s 0.1 s 1 s 0.1 s

|e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
DUR 1 9.50e-3 3.84e-2 1.28e-1 1.29e-1

2 5.09e-3 0.90 1.90e-2 1.01 6.41e-2 1.00 6.56e-2 0.97
3 2.62e-3 0.96 9.57e-3 0.99 3.25e-2 0.98 3.49e-2 0.91

MIN 1 3.45e-3 1.37e-2 3.66e-2 8.58e-2
2 7.98e-4 2.11 4.35e-3 1.65 1.36e-2 1.43 3.48e-2 1.30
3 2.06e-4 1.95 1.27e-3 1.78 5.13e-3 1.41 2.03e-2 0.78

AVG 1 3.90e-3 1.16e-2 2.26e-2 7.38e-2
2 1.01e-3 1.95 3.51e-3 1.72 7.52e-3 1.59 2.42e-2 1.61
3 2.60e-4 1.96 9.76e-4 1.85 2.18e-3 1.79 6.69e-3 1.85

LCD 1 8.05e-3 3.96e-2 1.47e-1 1.18e-1
2 4.91e-3 0.71 1.91e-2 1.05 6.61e-2 1.15 5.67e-2 1.06
3 2.61e-3 0.91 9.45e-3 1.01 3.12e-2 1.08 2.70e-2 1.07

NLCD 1 3.77e-3 1.12e-2 2.15e-2 7.33e-2
2 9.83e-4 1.94 3.33e-3 1.75 7.04e-3 1.61 2.42e-2 1.60
3 2.50e-4 1.97 9.17e-4 1.86 2.03e-3 1.79 6.67e-3 1.86

LCD EXTR 1 4.14e-3 1.28e-2 2.27e-2 8.61e-2
2 1.04e-3 1.99 3.68e-3 1.80 7.76e-3 1.55 3.30e-2 1.38
3 2.60e-4 2.00 1.01e-3 1.86 2.37e-3 1.71 1.24e-2 1.41

LCD BJ 1 3.99e-3 1.24e-2 2.32e-2 7.13e-2
2 1.02e-3 1.97 3.63e-3 1.77 7.80e-3 1.57 2.48e-2 1.52
3 2.58e-4 1.98 1.01e-3 1.84 2.36e-3 1.72 7.24e-3 1.78

MLG 1 1.11e-2 3.61e-2 9.24e-2 1.10e-1
2 5.20e-3 1.09 1.74e-2 1.05 4.83e-2 0.93 5.28e-2 1.06
3 2.61e-3 0.99 8.79e-3 0.98 2.49e-2 0.95 2.74e-2 0.95

LSM EXTR 1 4.14e-3 1.28e-2 2.25e-2 8.60e-2
2 1.03e-3 2.01 3.66e-3 1.81 7.66e-3 1.55 3.31e-2 1.38
3 2.57e-4 2.00 1.00e-3 1.87 2.33e-3 1.72 1.24e-2 1.42

LSM BJ 1 3.96e-3 1.24e-2 2.29e-2 7.12e-2
2 1.01e-3 1.97 3.60e-3 1.78 7.67e-3 1.58 2.49e-2 1.51
3 2.55e-4 1.98 1.00e-3 1.85 2.32e-3 1.72 7.24e-3 1.78

LSM LCD 1 8.05e-3 3.96e-2 1.47e-1 1.18e-1
2 4.91e-3 0.71 1.91e-2 1.05 6.61e-2 1.15 5.67e-2 1.06
3 2.61e-3 0.91 9.45e-3 1.01 3.12e-2 1.08 2.70e-2 1.07

NL LSM 1 3.72e-3 1.11e-2 2.12e-2 7.32e-2
2 9.74e-4 1.93 3.28e-3 1.76 6.91e-3 1.62 2.42e-2 1.60
3 2.46e-4 1.98 9.02e-4 1.86 1.99e-3 1.79 6.67e-3 1.86
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Figure 5.1: Advection TEST3: L2 error vs spacing between adiacent nodes of the different
meshes.

Table 5.2: Dispersion test. Example 1D.

` Eu MP
0.1 s 1 s 0.1 s 1 s

|e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 5.56e-4 5.57e-3 1.96e-4 7.62e-4
2 2.60e-4 1.10 2.60e-3 1.10 4.88e-5 2.00 1.80e-4 2.08
3 1.26e-4 1.04 1.26e-3 1.04 1.17e-5 2.06 4.38e-5 2.04
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Table 5.3: Dispersion test. Example 2D. Steady-state.

` |e`,2| rate
1 3.17e-2
2 8.04e-3 1.98
3 2.02e-4 1.99

Table 5.4: Advection-dispersion test. 1D Example 1: D = 1.e− 2, ~v = (1, 0, 0).

Eu-Eu na = 1 Eu-Eu na = 4 Eu-Eu na = 8 MP/NCORR MP/CORR
` Pe |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 0.6 5.78e-3 5.63e-3 5.56e-3 5.87e-3 5.84e-3
2 0.15 1.32e-3 2.13 1.28e-3 2.14 1.32e-3 2.07 1.35e-3 2.12 1.13e-3 2.37
3 0.038 5.18e-4 1.35 5.20e-4 1.30 5.44e-4 1.28 5.30e-4 1.35 2.64e-4 2.10

5.3 Advection-dispersion equations

First we consider one-dimensional problems solved in a three-dimensional grid system. In

the case of costant coefficients, Pe decreases by a factor of 4 in passing from a coarser to

a finer level, while CFL is kept constant at 0.29.

5.3.1 Example 1.

The first test solves the transport equation on the rectangular domain previously described,

with velocity defined as ~v = (1, 0, 0). The Dirichlet boundary conditions and the source

term are determined so that the exact solution is given by c( ~P , t) = sin 2π(x− t). A time
step ∆ta = 1 × 10−3 is used at the coarsest mesh and halved in passing to the next finer
level. The dispersive time step is set equal to the advective one when considering second

Table 5.5: Advection-dispersion equation. 1D Example 1: D = 1.e− 4, ~v = (1, 0, 0).

Eu-Eu na = 1 Eu-Eu na = 4 Eu-Eu na = 8 MP/NCORR MP/CORR
` Pe |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 60 1.11e-2 1.11e-2 1.11e-2 1.15e-2 1.14e-2
2 15 3.48e-3 1.67 3.47e-3 1.68 3.46e-3 1.68 3.70e-3 1.64 3.44e-3 1.73
3 3.8 1.10e-3 1.66 1.10e-3 1.66 1.09e-3 1.67 1.23e-3 1.59 9.64e-4 1.83
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order discretization scheme in time while in the other cases it depends on the number of

advective steps na allowed for each dispersive time step, following the formula described

in Algorithm (2.1). All the results reported are relative to a final time tk = 0.1 s. We

compare the time splitting technique with first order of accuracy in time (Eu-Eu) and

different advective time steps for dispersive steps (na=1,4,8) and applying second order

discretization scheme in time adding the correction term in the FV scheme (MP-CORR)

and with no correction (MP-NCORR).

Two different values of dimensionless dispersion are considered: D = 1 × 10−2 and
D = 1 × 10−4. In the first case dispersion is dominant and Pe varies from 0.6 (` = 1) to
0.038 (` = 3). The convergence of the scheme is mainly driven by the MHFE technique.

Indeed, with Eu-Eu procedure, the best results are obtained with the same time steps for

advection and dispersion (na = 1) as shown in Table 5.4, while the correction term in the

second order time-splitting algorithm is necessary to preserve second order convergence

rate. With D = 1× 10−4 advection is dominant: Pe varies from 60 (` = 1) to 3.8 (` = 3)
and the advective terms become important, expecting better accuracy for Eu-Eu when

na > 1. Table 5.5 shows the errors and convergence rates for D = 1 × 10−4. We can
observe that the differences between the Eu-Eu schemes with na = 1, na = 4 and na = 8

are not important, so that na > 1 advective steps for dispersive step can be employed,

reducing the total number of time steps (and of MHFE linear systems solution) by na with

significant saving of CPU time and, at the same time, no visible accuracy reduction. Once

again we observe that the results obtained with MP-CORR show second order accuracy

while the MP-NCORR scheme displays an order of accuracy less than that achieved by

the Eu-Eu scheme, according to the theory.

5.3.2 Example 2.

A second test problem considers the partial differential equation describing the movement

of a tracer in a semi-infinite column and simulate it on the same three dimensional domain

used in the previous example, with ~v = (1, 0, 0) andD = 1×10−2. The boundary conditions
are c = 1 in x = 0 and c = 0 for x = ∞. Zero concentration is used as initial condition.
The infinite domain is simulated numerically by employing the grid of unitary length and
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Table 5.6: Advection-dispersion equation. 1D Example 2: D = 1.e− 2, ~v = (1, 0, 0)

Eu-Eu na = 1 Eu-Eu na = 4 Eu-Eu na = 8 MP/NCORR MP/CORR
` Pe |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 0.6 1.70e-2 1.94e-2 2.34e-2 1.55e-2 1.73e-2
2 0.15 6.83e-3 1.31 9.38e-3 1.05 1.29e-2 0.86 6.02e-3 1.36 4.83e-3 1.84
3 0.038 3.01e-3 1.18 4.81e-3 0.96 7.56e-3 0.77 2.65e-3 1.18 1.28e-3 1.91

making sure that at the time at which the relative error is evaluated the solution vanishes

naturally at the right boundary. The analytical solution to this problem is given by [3]:

c(~P , t) =
1

2
(erfc

x− v1t
2
√
Dt
+ exp

x

D
· erfcx+ v1t

2
√
Dt
)

The same values of CFL and time step sizes as used previously are employed for this

simulation, while Pe varies from 0.6 (` = 1) to 0.038 (` = 3). Table 5.6 shows the errors

and convergence rates at the different levels confirming the considerations stated above for

the same dispersion and velocity parameters.

5.3.3 Two-dimensional test

We now describe a two-dimensional problem solved in the three-dimensional grid system.

We consider a velocity field ~v = (.5, .5, 0) and vary the size of the dispersion coefficient.

The Dirichlet boundary conditions and the source term are determined so that the exact

solution is given by c( ~P , t) = sin 2π(x− v1t) sin 2π(y − v2t).
Table 5.7 reports the results to the problem with D = 4× 10−4 at time tk = 0.1 s. The

CFL number for this test case is set equal to 0.33 and Pe varies between 67 (` = 1) to 4.2

(` = 3). Advection is dominant and the HRFV scheme error contributes the most to the

truncation error. In this case, the differences between MP/CORR and MP/NCORR are

not important and larger dispersion time step sizes could be used without loss of accuracy.

An efficient choice in this case could be for example the Eu/Eu scheme with na = 8.
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Table 5.7: Advection-dispersion equation. 2D Example: D = 4.e− 4, ~v = (0.5, 0.5, 0)

Eu-Eu na = 1 Eu-Eu na = 4 Eu-Eu na = 8 MP/NCORR MP/CORR
` Pe |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate |e`,2| rate
1 67 7.06e-2 7.04e-2 7.00e-2 7.06e-2 6.89e-2
2 17 2.33e-2 1.60 2.32e-2 1.60 2.29e-2 1.61 2.32e-2 1.60 2.30e-2 1.58
3 4.2 6.18e-3 1.91 6.11e-3 1.92 6.02e-3 1.93 6.17e-3 1.91 6.01e-3 1.94

6 Conclusions

In this paper we have presented the extension on tetrahedra of the time splitting technique

developed on triangular meshes. Extension of this technique required careful attention on

the adoption of suitable HRFV schemes in order to preserve second order spatial accuracy.

Indeed, generalizing the MHFE method to three dimensions required only some compu-

tational effort to calculate integrals on three dimensions. On the other hand, the numerical

results confirmed the well-known properties of this scheme (as superconvergence on the

centroids of the cells).

On the contrary, among the generalizations of several FV schemes developed on two

dimensional unstructured grids, it was difficult to obtain the same degree of robustness

and accuracy as in two dimensions. Therefore, some open question still remain about the

anisotropy of the tetrahedral mesh and the capability of the limiters of properly correcting

the linear reconstruction.

An efficient strategy has been found by applying a second order linear reconstruction

using the least squares method with the limiting procedure based on the Barth-Jespersen

limiters, as the numerical results for advection problems confirm (the LSM BJ method).

The time splitting technique developed on tetrahedra has employed the MHFE and

the LSM BJ schemes for discretizing the dispersion and the advection terms, respectively.

Simple test problems have confirmed the time splitting technique as an effective tool for

the solution of the advection-dispersion equation not only in two dimensional triangular

grids but also on tetrahedral meshes.
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A Construction of the RT0 basis functions in two di-

mensions

In two dimensions and working on triangles Tl, with edges e1, e2, e3 and nodes ~P1, ~P2, ~P3,

(we use a similar notation as well as for tetrahedra), the RT0 basis functions are of the

following form:

~wil =







ailx+ bil

aily + cil





 i = 1, 2, 3.

The normal to an edge e1 = ~P1 ~P2 is derived by the plane:
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that is α(x− x1) + β(y − y1) = 0, where

α = y2 − y1, β = x1 − x2.

The normalized components of the normal to e1 are then (with no consideration about

inner or outward normal) :

nx =
α√

α2 + β2
, ny =

β√
α2 + β2

.

Property (3.9) applied on two dimensions gives the following result:

∫

ei
~wjl · ~nil dS =

∫

ei
(ax+ b)nx + (ay + c)ny dS =

a
∫ ~P2

~P1
{xnx + [y1 −

nx
ny
(x− x1)]ny}

1

|ny|
dx+

∫ ~P2

~P1
(bnx + cny)

1

|ny|
dx =

a
∫ ~P2

~P1
(x1nx + y1ny)

1

|ny|
dx+

∫ ~P2

~P1
(bnx + cny)

1

|ny|
dx =

a(x1nx + y1ny)
|~P1 ~P2|
|ny|

+ (bnx + cny)
|~P1 ~P2|
|ny|

= δij

where | ~P1 ~P2| is the length of the edge e1, that is
√

(x2 − x1)2 + (y2 − y1)2 =
√
α2 + β2.

Therefore, we obtain:

∫

ei
~wjl · ~nil dS = (x1α+ y1β) + (bα+ cβ) = δij
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The 2D classical Galerkin functions Ni, i = 1, 2, 3, whose gradients are normal to the edges

ei+1 for i = 1, 2 while the gradient of N3 is normal to e1, can be written as:

Ni =
ai + bix+ ciy

2A
,

where A is the area of the triangle Tl. In particular, the coefficients are:
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∣

∣

∣

∣

∣

∣

∣

c2 =

∣

∣

∣

∣

∣

∣

∣

1 x1

1 x3

∣

∣

∣

∣

∣

∣

∣

c3 = −

∣

∣

∣

∣

∣

∣

∣

1 x1

1 x2

∣

∣

∣

∣

∣

∣

∣

It is simple to see that, for example, for the edge e1 the following relations hold:

αx1 + βy2 = −a3, α = b3, β = c3

Thus
∫

e1
~wj · ~n1 dS = −a3a+ (b3b+ c3c). (A.1)

The unknowns are now the coefficients a, b, c of ~wj. Setting j = 1, from relation (3.9) and

substituting (A.1), we get:

−a3a+ b3b+ c3c = 1
−a1a+ b1b+ c1c = 0
−a2a+ b2b+ c2c = 0

(A.2)

Note that
3
∑

i=1

bi =
3
∑

i=1

ci =0 and that
∑3
i=1 ai = 2A, where A is the area of Tl:

A =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 y1

1 x2 y2

1 x3 y3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Therefore system (A.2) gives the following relationship between a and A:

−2Aa = 1⇔ a = − 1
2A

.
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Application of divergence theorem to
∫

T
~∇ · ~wi dx (following the same lines as in the 3D

case) assures that the value of a is the same along the three edges of Tl and is positive and

equal to
1

2|A| .
Again, considering the first equation of system (A.2) and the measure of A, we obtain

for ~w1:

b1 =
−x3
2|A| , c1 =

−y3
2|A| .

Similarly, the coefficients for ~w2 and ~w3 are:

bj =
−xj−1
2|A| , cj =

−yj−1
2|A| .

B About computation of the advective fluxes in 2D

When calculating the advective flux in two dimensions, we take into account that

∫ P2

P1
~v · ~n dS =

∫

vxnx + vyny dS ≈ (vxnx + vyny)|~P1 ~P2| = vxα+ vyβ

We have approximated velocity with the value on the midpoint of the edge e1.
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