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m Lecture # 1. Sparse matrices. Why iterative methods. Linear algebra
preliminaries. Basics on iterative methods. The Conjugate Gradient (CG)
method. Convergence properties and implementation.

m Lecture # 2. Optimality properties of the CG method. Krylov subspaces.
Nonsymmetric linear systems. Krylov-based iterative methods. The Generalized
Minimal RESidual method (GMRES).

m Lecture # 3. Acceleration of iterative methods: preconditioning.The Incomplete
Cholesky (IC) and the Incomplete LU (ILU) preconditioners. Parallel-oriented
preconditioners. (Block) Jacobi, sparse approximate inverse preconditioners.

m Lecture # 4. Low rank updates of preconditioner for sequences of linear systems
arising from the Newton's method.

m Lecture # 5. The tuned preconditioners. Applications to eigenvalues problems
and sequences of shifted linear systems arising from PDEs.

m Lecture # 6. Block preconditioners for saddle-point problems.

m Lecture # 7. The Constraint Preconditioner for linear systems arising in Interior
Point methods for Constrained Optimization. Acceleration by low-rank
preconditioners.
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Update of preconditioners by low-rank matrices

Update of preconditioners by low-rank matrices




Newton's method for nonlinear systems

We need to efficiently solve nonlinear systems of equations of the type

F(x)=0

where F: R" — R", differentiable in an open set Q C R"”. by the Newton method

—F(x)
X + Sk

{ J(xx)sk

Xk+1

and J(x) is the Jacobian matrix.

The linear systems are large, sparse, and possibly nonsymmetric.




m We look for a sequence of preconditioner {By} such that ||/ — BxJ(xx)|| is
sufficiently small

m To construct By, we use information from the nonlinear iteration
Quasi-Newton approach

m The idea is to start with a preconditioner By * for Jo = J(xo).

m Correct the previous preconditioner by a rank one update
Bii1=Bi+uv’
m By 1 must satisfy the secant condition, namely
Bit18k = Yk
m where y, =Fy 1 —Fy.

m Remark. There are infinitely many matrices By satisfying the secant condition
(n constraint n? degrees of freedom).
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Determining vectors u and v

m From the secant condition and the definition of Bj.1, we obtain that

Yk — Busk
u=>
A -7%

m To get a unique By we impose that By is the closest matrix to By in the
Frobenius norm
Biy1 = argmin [|B—Bx|r

B: Bsy=yy
(Recall [[All = /L7, £7; a2).
m obtaining
sl
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Preconditioners

m Given By, Byy; is defined as

Yk — Bisi)s]
Bii1 = Bi+ (Ti)k
Sy Sk

m It is advisable to have the preconditioner in its inverse form. Defined P, = B;l
then
m Applying the Shermann-Morrison inverse formula

(Piyk —sk)s] Pk

Piy1 = Pi—
s/ Py

m The k—th linear system: J(xx)sx = —F(xx) is solved by an iterative method
preconditioned with Pj.




Theoretical analysis of the preconditioners

We will make the standard assumptions on F.

Equation F(x) =0 has a solution x*.
F’':Q — R" xR" is Lipschitz continuous with constant 7.

F’(x*) is nonsingular.
Notation

m Jys=—F, where X441 =x(+s.
m Error vectors e, = x* —x

m Error matrices E; = By — J(x¥),




Bounded deterioration property

Lemma

Let the standard assumptions hold. Then

(lecll +lle+1)

A TARREs

This property assures that the distance of By to the Jacobian in the exact solution
does not grow.

Moreover the sequence of By is well defined as

Theorem

|

Let the standard assumptions hold. Define o = ||J(x*)7!||. Fixed 0 < & < L then
there exist 8 and 8g such that if |leo|| < 8 and ||Eg|| < O then

1B < Vk>0

a
175106
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Properties: ||/ — PxJ(xx)|| bounded.

Finally, the distance between the preconditioned matrix PxJ(xx) and the identity
matrix can be made as small as desired by starting sufficiently close to the solution,
and choosing a good initial preconditioner.

Theorem

|

Let the standard assumptions hold. Define o = ||J(x*)™!||. Fixed 0 < & < L then
there are 6,0g such that if ||eg|| < 8, ||Eol| < 8p then

5106
1-6o’

[l = Predi|| < vk >0

@ Bergamaschi Bru Martinez Putti
Quasi Newton preconditioners for the Inexact Newton method.
Electronic Transaction on Numerical Analysis, 2006
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Notes on implementation

How to apply the preconditioner to a vector.

(

m At a certain nonlinear iteration level, k, and given z,’, we want to compute

c= PkZE(/)

m Recall the final preconditioner

(Pryk —sk)s] Pk

Pii1= P —
s} Pryk

s — Bys Piu
m Setting vy = —%, up =2k 2Kk and wy = KUk
lIsk| [Iskll 1+ vy Prug

u Pk = (/ 7Wk,1vz—71) Pk—l

= (I =wiav_y) (I =wiav]_5) -+ (I —wov] ) Po

;



Notes on implementation

m k=0, we compute, at each iteration

c= PoZE(I)

m k >0, before starting the iteration we have to compute
/!
up 1 = Prqup g, and Wy 1=

and, at every linear iteration,

c = szgj) = (Ifwk,lvl(tl) Pk,lzg(/)

(I - wk,lel) . (, 7W0V(;r) Poz)
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Notes on implementation

In summary
m Before the k—th linear system solution. Assume we know u;,v;,w;, i=1,... k—2.

Compute uy_1,vi 1. Then compute P, _juy_1 at the price of an application of
Py, k—2 dot products and k —2 daxpy operations, by

Pr_qup_1 = (l *Wk72VkT,2> (/ *W0V0T> Pouk_1

implemented as

z= Pouy_g; oc:voTz,z:z—awo

a=vlz z=z—aw;

o= VZ—72Z, Z=Z—0Wj_ >
m At each linear iteration
I
c= (I —wk,lel) (I —wov(;r> P()ZS()

at the price of an application of Py, k—1 dot products and k — 1 daxpys.



Newton-Broyden (NB) Algorithm

m Stopping criterion (Inexact Newton methods)
[[J(xic)sic 4+ F (i) | < M| F () -
with lim n, =0.
k—soo

Linear systems are solved with increasing accuracy as the Newton iteration proceed.

NEWTON-BROYDEN (NB) ALGORITHM
Input: xo,F,nImax, toll

m WHILE |[F(x,)| > toll AND k < nlmax DO

Compute Py a preconditioner for Jy; k=0

IF k >0 THEN update Py from Py 1.

Solve J(xx)sk = —F(xx) by an iterative method with preconditioner Py and
tolerance 1.

B X1 =Xk + Sk

k=k+1

® END WHILE

Drawback: increasing costs of memory for wy and v.
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Restarted Newton-Broyden (RNB) Algorithm

Like in GMRES only kmax vectors wy and v, are stored.

After kmax Newton iterations a new “initial” preconditioner Py is computed and the
sequence of preconditioners is restarted.

RESTARTED NEWTON-BROYDEN (RNB) ALGORITHM
Input: xg,F, kmax, nfmax, toll

m Compute Py, a preconditioner for Jy; k=0
m WHILE |[F(x,)| > toll AND k < nlmax DO
IF k >0 THEN update Py from Py_1.
Solve J(x)sk = —F(x«) by an iterative method with preconditioner P.
Xk+1 = Xk + Sk
A k=k+1

IF k MOD Kmax = 0 THEN
m RESTART: xg = xy; k =0; compute Py a preconditioner for Jy

m END WHILE




Numerical problem

m Bratu problem:

—Au=AD(u), D = diag(exp(u1),..., exp(up))

where A is a matrix arising form a 2d or 3d discretization of the diffusion
equation on a unitary domain, and A is a real parameter.

m Matrices arising from discretization with 3D Finite Differences (FD), Mixed Finite
Elements (MFE) of the diffusion equation.

m Fortran code




2d MFE discretization, A =1

Matrix A with 28600 rows and 142204 nonzeros.
Mixed Finite Element discretization of the diffusion equation.

Table: Results on MFE matrix with By = ILU(0).

preconditioner  kmax  nlit iter cpu

tot  precond

ILU(0)(Jo) - 7 851 11.59 0.01
ILU(0)(Jk) - 7 754 8.65 0.04
RNB-ILU(0) 1 7 442 6.51 0.08
RNB-ILU(0) 2 7 470 6.56 0.06
RNB-ILU(0) 3 7 501 6.93 0.06
RNB-ILU(0) 5 7 529 7.09 0.06
NB-ILU(0) 6 515 9.67 0.06




2d MFE discretization, A =1

Matrix A with 28600 rows and 142204 nonzeros.
Mixed Finite Element discretization of the diffusion equation.

Table: Results on MFE matrix with By = AINV(0.1).

preconditioner  kmax  nlit iter cpu
tot  precond
AINV(0.1) (Jo) - 7 882 1835 0.17
AINV(0.1) (Jx) - 7 908 19.70 1.27
RNB-AINV(0.1) 1 8 574 14.62 1.57
RNB-AINV(0.1) 2 7 517 13.07 0.81
RNB-AINV(0.1) 4 7 502 1261 0.44
NB-AINV(0.1) 7 655 17.15 0.26




3d FE discretization
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Quasi-Newton preconditioners for sequences of linear systems

Recall Newton's method for

Fl(Xk)Sk = 7F(Xk)
Xpt1 = Xp+Sk
Quasi-Newton methods construct a sequence of approximations of the Jacobians
By ~ F'(xk).
Each By is defined by a low-rank update of the previous matrix in the sequence Bj_1.
Most common Quasi-Newton formulae
(yx — Bsk)s)

Broyden's method: Biy1 =B+ -
Sk Sk

. (yx — Bisi) (ye — Bisi) "
SR1 (S tric Rank-1): B =B
(Symmetric Rank-1) k+1 K+ (ve— Bese) s

T T
YK Bisksi Bk
v/ sk s] Bsy

BFGS update: Biy1 =B+



Tuning property

All these updates satisfy the secant condition as they all satisfy

Byt1sk = Yk-

Consider now the following substitutions:
Sk — W, Yy — Aw, By — My, Bxy1 — M,
which transform the secant condition into
Mw = Aw,
We call this TUNING PROPERTY.

The preconditioner M acts as the coefficient matrix A in at least one direction.
or, equivalently

PAw = w,

The preconditioned matrix PA has at least one additional eigenvalue at 1.

;



Direct, inverse and block formulations

Broyden (nonsymmetric) update.

A— M, T
direct M:Mo+ﬂ Mw = Aw
w
PoAw — TP
inverse | P=Py— —( 0 WWTP:IA):: 0 PAW = w

block | P=Py—(PoAW — W) (WTPAW) " WT P,y | PAW =W

SR1 (symmetric but not PD) update.
T

direct | M= Mo+ 2, u=(A—Mo)w
w'u
T
i P=py— 2% _ 2= PoAw —w
inverse 0 T Aw’ 0

1

block | P=Py—Z(ZTAW)  ZT, Z=PyAW-W

BFGS (SPD) update.
T T
direct M = My + Aww A - Moww " Mo

wT Aw w T Mow
iverse | P MWL (jWWTAN o AwwT
nv = — —_
wT Aw wiAw ) ° wT Aw

block P=WNWT+HPHT N=WTAW H=/I-wnwTA



The BFGS sequence is SPD

The Broyden tuning strategy must be used for nonsymmetric problems, the BFGS
formula is well suited to accelerate the PCG method due to the following result:

The preconditioner P yielded by the BFGS update formula is SPD provided Py is so.

For every nonzero x € R” we set z=Hx and u= W7'x. Then we have
x"Px=(WTx)TN Y WTx)+x"HPoHTx =u" N tu+2z" Pyz > 0.

the last inequality holding since both M~ and Py are SPD matrices.

The inequality is strict since if u=0 then W7Tx =0 and hence

z=(—AWNTWTx=x#0.

;



When is the SR1 update SPD too?

Theorem

Let A be an SPD matrix and Py and SPD preconditioner. If the columns of W are
eigenvectors corresponding to the p smallest eigenvalues of PoA, 1;,j=1,...,p and

wi<1, j=1,...pthen P=Py—Z(ZTAW) ' ZT is SPD.

Proof.
It is sufficient to prove that —ZT AW is SPD (Recall Z = W — PyAW).

Matrix W satisfies PoAW = WO, with © =diag(u1,...,Hp).

PoAW = WO — PYPARYPPVPW =P ?we — Au=ue.
———— N——
A U U

Now A is SPD so it has orthonormal eigenvectors (the columns of U). Hence

UTu=1 = Wiplw=1 = wTaw=e0.

It follows that
—ZTAW = (W — PoAW)T AW = (1 —@)WT AW = (1 —©)©

is SPD.



Other approaches

Deflation.

Saad et al (2000) proposed a deflated version of the CG in which the follwing deflated
preconditioner is defined

H=1-WWTAW)TWTA

The action of this precondtioner is to put m eigenvalues to zero!

However all the CG residuals are forced to lie in the rank of H (no breakdown can
occurr).

@ Saad, Y. and Yeung, M. and Erhel, J. and Guyomarch, F.,
A deflated version of the conjugate gradient algorithm,
SIAM J. Sci. Comput., 2000




Spectral Preconditioners

Given a full-rank rectangular (tall) matrix W and an initial preconditioner Py, the
preconditioner P is defined as

P=pPy+W(WTAW) twT

The action of this preconditioner, if W contain the approximate eigenvectors
corresponding to the smallest eigenvalues, is to add 1 to these eigenvalues

Assume PyAW = WA then

(PAYW = (PoAYW + W(WTAW) TWT AW = WA+ W = W(A41).

@ B. Carpentieri and I. S. Duff and L. Giraud,
A class of spectral two-level preconditioners,
SIAM J. Sci. Comput., 2003

;



Choice of the vectors {w;}.

In all cases: optimal choice for columns of W: the eigenvectors of the preconditioned
matrix PyA corresponding to the smallest eigenvalues.

Shall we compute these eigenvector accurately?

To test this we used perturbed eigenvectors i.e. satisfying ||PoAw; — pw;|| =~ 8.
Coefficient matrix

A = delsq(numgrid('L’,500));
which returns a sparse matrix of order n = 186003.

The linear system Ax = b, with b a random uniformly distributed vector, has been
solved by the PCG method with various low-rank update techniques with Py = IC(0).

| no update tuned  deflated  spectral |

exact 466 254 254 254
6=0.01 | 466 261 259 290
6 =0.05 | 466 378 260 286

Notable improvement of number of iterations even with badly approximated
eigenvectors (the tuned version being more sensitive to accuracy).
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Can we use different vectors?

What if one uses eigenvectors of A as columns of W?

Again we use either exact eigenvectors or vectors satisfying ||Aw; — A;w;|| = &.

| no update tuned deflated  spectral |

exact 466 254 254 254
§=10"3 | 466 296 296 297
§=0.01 | 466 362 361 369

With exact eigenvectors there is still an important reduction of the number of
iterations. Why?




An experimental answer

Usually IC/ILU preconditioners leave almost unchanged the eigenvectors corresponding
to the smallest eigenvalues (though increasing the latter ones).

Compare the eigenpairs (4;,v;) of A, with those of the preconditioned matrix with two
choices of Py:

P1 ,P1
m /C(0) (IJJ' »Vj )
P2 \ P2

m IC(le—2) (1;%,v;7) .

Eigenvalues and angle between eigenvectors of A and IC-preconditioned A.

1072
j ‘ 4<vj,vf1> / vj.,vj'f)2 o
1 | 1.7445e-05 2.6952e-04 & 4

O

2 | 3.6118e-05 4.3401e-04 - /”J—& )
3 | 9.6668e-05 1.5363e-04 T -
4 | 1.9743e-04 4.5222e-03
5 | 1.7449e-04 4.9131e-03

—x—eigenvalues of A
—o—eigenvalues of PO A (1)
—=—eigenvalues of PO A (2)

3 4 5 6 7 8 9 10



Recovering the leftmost eigenpairs

Lanczos' method

As known Lanczos' method aims at computing the extremal eigenvalues of an SPD
matrix A by constructing an orthogonal basis of the Kryov subspace generated by A
and a given initial vector qj.

Matrix Q defined as
Qm= [QI q2 "'Qm]

satisfies
Q,Z,—AQm - Tm

where T, is a tridiagonal matrix of size m. (why does this remind me GMRES? in
that case we had V,Z,—AVm =Hp.)

Finally some of the extremal eigenvalues are approximated by the extremal eigenvalues
of the “small” matrix T,,.




PCG-Lanczos connection

A simple way to recover some of the extremal eigenpairs of the preconditioned matrix
is to exploit the so called Lanczos connection (Golub and van Loan, Matrix
Computations).

During the PCG method, preconditioned with Py, it is possible to save the first m
(scaled) preconditioned residuals as columns of a matrix Vj,:

Vin=

VPo VPLT Pt |

Poro Pory o Porm—1 { 20 z1 Zmo1
T
\/rmflPorm,l

Note all these vectors an scalars are computed during PCG. No additional cost.

Matrix V), satisfies V,,7,—P0’1 Vi = In.




Implicit Lanczos method within PCG

The Lanczos tridiagonal matrix can be formed using the PCG coefficients o, fBx:

- i - 7ﬁ .

4] 0

vBo 1 B VB

Olp (041 oo (041
Tm=

_ ﬁm—l
Om—2
Bm-1 1 i Bm-1
- Om—2 Om-1 Om—2 -

Matrices V,,, and T, obey to the classical Lanczos relation i.e.:

VIAV,, = Tp.

Practically during PCG:

Collect m =50,70,100 preconditioned residuals, and T,.
Eigensolve T, obtaining T, = QALQT.

Select the p smallest eigenvalues and eigenvectors Q, = Q(1: p).

=

Project the small matrix Qp, to obtain approximation of the eigenvectors of A:

Wo =V Qp e



Remarks

m This procedure can be implemented to a very little computational cost but it has
a number of disadvantages:

m First, it requires the storage of m preconditioned residuals,

m Second, as the convergence for the Lanczos process to the smallest eigenvalues is
relatively slow, it sometimes happens that PCG convergence takes place before
eigenvector convergence.

m Third, some of the leftmost eigenpairs can be missing by the non-restarted
Lanczos procedure.

Remedy to drawbacks 2 and 3

If a sequence of linear systems has to be solved then the eigeninformation for matrix
Py A can be refined during the first linear systems and then used for the next ones.

@ Stathopoulos, A. and Orginos, K.
Computing and deflating eigenvalues while solving multiple right-hand side linear
systems with an application to quantum chromodynamics
SIAM Journal on Scientific Computing
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Exercise

Implementation of the SR1 update within the Matlab PCG.

p= Pofz(ZTAW>712T, Z = PoAW — W

function z = srl1(x,L,Z H)
y = L'\ (L\x);
u 7' xx;

u Hxu;

z y — Zxu;

Approximation of the leftmost eigenpairs of PyA by solving the generalized
eigenproblem Ax = A(LLT)x by function eigs.

[W, Lambda] = eigs (A, LxL',p, 'sm’, "tolerance’ K le—3);
Preprocessing

Z
H

L'\ (L\(A-W) )-W;
inv(Ws(AxZ));

Invoking the PCG with a function handle as the preconditioner

[x,f,rel it resvecTUN] = pcg(A, b, TOL,MAXIT,@(x) srl(x,L,Z,H));

;
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