
Iterative Methods and Preconditioning
for Sparse Linear Systems

Luca Bergamaschi
Department of Civil Environmental and Architectural Engineering
e-mail:luca.bergamaschi@unipd.it, webpage: www.dmsa.unipd.it/˜berga

Ángeles Martinez
Department of Mathematics “Tullio Levi-Civita”
e-mail:angeles.martinez@unipd.it, webpage: www.math.unipd.it/˜acalomar

Outline

Lecture # 1. Sparse matrices. Why iterative methods. Linear algebra
preliminaries. Basics on iterative methods. The Conjugate Gradient (CG)
method. Convergence properties and implementation.

Lecture # 2. Optimality properties of the CG method. Krylov subspaces.
Nonsymmetric linear systems. Krylov-based iterative methods. The Generalized
Minimal RESidual method (GMRES).

Lecture # 3. Acceleration of iterative methods: preconditioning.The Incomplete
Cholesky (IC) and the Incomplete LU (ILU) preconditioners. Parallel-oriented
preconditioners. (Block) Jacobi, sparse approximate inverse preconditioners.

Lecture # 4. Low rank updates of preconditioner for sequences of linear systems
arising from the Newton’s method.

Lecture # 5. The tuned preconditioners. Applications to eigenvalues problems
and sequences of shifted linear systems arising from PDEs.

Lecture # 6. Block preconditioners for saddle-point problems.

Lecture # 7. The Constraint Preconditioner for linear systems arising in Interior
Point methods for Constrained Optimization. Acceleration by low-rank
preconditioners.

2 of 34

Update of preconditioners by low-rank matrices

Update of preconditioners by low-rank matrices

3 of 34

Newton’s method for nonlinear systems

We need to efficiently solve nonlinear systems of equations of the type

F(x) = 0

where F : Rn→ Rn, differentiable in an open set Ω⊂ Rn. by the Newton method

{
J(xk)sk = −F(xk)
xk+1 = xk + sk

and J(x) is the Jacobian matrix.

The linear systems are large, sparse, and possibly nonsymmetric.

4 of 34

Problem

We look for a sequence of preconditioner {Bk} such that ||I −BkJ(xk)|| is
sufficiently small

To construct Bk , we use information from the nonlinear iteration

Quasi-Newton approach

The idea is to start with a preconditioner B−1
0 for J0 ≡ J(x0).

Correct the previous preconditioner by a rank one update

Bk+1 = Bk +uvT

Bk+1 must satisfy the secant condition, namely

Bk+1sk = yk

where yk = Fk+1−Fk .

Remark. There are infinitely many matrices Bk+1 satisfying the secant condition
(n constraint n2 degrees of freedom).

5 of 34

Determining vectors u and v

From the secant condition and the definition of Bk+1, we obtain that

u =
yk −Bksk

vT sk
.

To get a unique Bk+1 we impose that Bk+1 is the closest matrix to Bk in the
Frobenius norm

Bk+1 = argmin
B: Bsk=yk

‖B−Bk‖F

(Recall ‖A‖F =
√

∑
n
i=1 ∑

n
j=1 a

2
ij).

obtaining

v =
sk
‖sk‖

.

6 of 34

Preconditioners

Given Bk , Bk+1 is defined as

Bk+1 = Bk +
(yk −Bksk)sTk

sTk sk
.

It is advisable to have the preconditioner in its inverse form. Defined Pk = B−1
k

then

Applying the Shermann-Morrison inverse formula

Pk+1 = Pk −
(Pkyk − sk)sTk Pk

sTk Pkyk
.

The k−th linear system: J(xk)sk =−F(xk) is solved by an iterative method
preconditioned with Pk .

7 of 34

Theoretical analysis of the preconditioners

We will make the standard assumptions on F.

1 Equation F (x) = 0 has a solution x∗.

2 F ′ : Ω→ Rn×Rn is Lipschitz continuous with constant γ.

3 F ′(x∗) is nonsingular.

Notation

Jks =−Fk where xk+1 = xk + s.

Error vectors ek = x∗−xk

Error matrices Ek = Bk −J(xk),

8 of 34

Bounded deterioration property

Lemma
Let the standard assumptions hold. Then

‖E+‖ ≤ ‖Ec‖+ γ
(‖ec‖+‖e+‖)

2

This property assures that the distance of Bk to the Jacobian in the exact solution
does not grow.

Moreover the sequence of Bk is well defined as

Theorem

Let the standard assumptions hold. Define α = ‖J(x∗)−1‖. Fixed 0 < δ1 <
1

α
, then

there exist δ and δB such that if ‖e0‖< δ and ‖E0‖< δB then

‖B−1
k ‖<

α

1−δ1α
, ∀k > 0

9 of 34

Properties: ‖I −PkJ(xk)‖ bounded.

Finally, the distance between the preconditioned matrix PkJ(xk) and the identity
matrix can be made as small as desired by starting sufficiently close to the solution,
and choosing a good initial preconditioner.

Theorem

Let the standard assumptions hold. Define α = ‖J(x∗)−1‖. Fixed 0 < δ1 <
1

α
, then

there are δ ,δB such that if ‖e0‖< δ , ‖E0‖< δB then

‖I −PkJk‖<
δ1α

1−δ1α
, ∀k > 0

Bergamaschi Bru Martinez Putti
Quasi Newton preconditioners for the Inexact Newton method.
Electronic Transaction on Numerical Analysis, 2006

10 of 34

Notes on implementation

How to apply the preconditioner to a vector.

At a certain nonlinear iteration level, k, and given z
(l)
k , we want to compute

c = Pkz
(l)
k

Recall the final preconditioner

Pk+1 = Pk −
(Pkyk − sk)sTk Pk

sTk Pkyk
.

Setting vk =
sk
‖sk‖

, uk =
yk −Bksk
‖sk‖

and wk =
Pkuk

1 +vkPkuk
,

Pk =
(
I −wk−1v

T
k−1

)
Pk−1

=
(
I −wk−1v

T
k−1

)(
I −wk−2v

T
k−2

)
· · ·
(
I −w0vT0

)
P0

11 of 34

Notes on implementation

k = 0, we compute, at each iteration

c = P0z
(l)
k

k > 0, before starting the iteration we have to compute

u′k−1 = Pk−1uk−1, and wk−1 =
u′k−1

1 +vTk−1u
′
k−1

and, at every linear iteration,

c = Pkz
(l)
k =

(
I −wk−1v

T
k−1

)
Pk−1z

(l)
k

=
(
I −wk−1v

T
k−1

)
· · ·
(
I −w0v

T
0

)
P0z

(l)
k

12 of 34

Notes on implementation

In summary

Before the k−th linear system solution. Assume we know ui ,vi ,wi , i = 1, . . . ,k−2.

Compute uk−1,vk−1. Then compute Pk−1uk−1 at the price of an application of
P0, k−2 dot products and k−2 daxpy operations, by

Pk−1uk−1 =
(
I −wk−2v

T
k−2

)
· · ·
(
I −w0v

T
0

)
P0uk−1

implemented as

z = P0uk−1; α = vT0 z, z = z−αw0

α = vT1 z, z = z−αw1

. . .

α = vTk−2z, z = z−αwk−2

At each linear iteration

c =
(
I −wk−1v

T
k−1

)
· · ·
(
I −w0v

T
0

)
P0z

(l)
k

at the price of an application of P0, k−1 dot products and k−1 daxpys.

Newton-Broyden (NB) Algorithm

Stopping criterion (Inexact Newton methods)

‖J(xk)sk +F(xk)‖ ≤ ηk‖F(xk)‖.

with lim
k→∞

ηk = 0.

Linear systems are solved with increasing accuracy as the Newton iteration proceed.

Newton-Broyden (NB) Algorithm
Input: x0,F,nlmax , toll

while ‖F(xk)‖> toll and k < nlmax do
1 Compute P0 a preconditioner for J0; k = 0
2 if k > 0 then update Pk from Pk−1.
3 Solve J(xk)sk =−F(xk) by an iterative method with preconditioner Pk and

tolerance ηk .
4 xk+1 = xk + sk
5 k = k + 1

end while

Drawback: increasing costs of memory for wk and vk .

14 of 34

Restarted Newton-Broyden (RNB) Algorithm

Like in GMRES only kmax vectors wk and vk are stored.

After kmax Newton iterations a new “initial” preconditioner P0 is computed and the
sequence of preconditioners is restarted.

Restarted Newton-Broyden (RNB) Algorithm
Input: x0,F,kmax,nlmax , toll

Compute P0, a preconditioner for J0; k = 0

while ‖F(xk)‖> toll and k < nlmax do
1 if k > 0 then update Pk from Pk−1.

2 Solve J(xk)sk =−F(xk) by an iterative method with preconditioner Pk .

3 xk+1 = xk + sk

4 k = k + 1

5 if k mod kmax = 0 then

RESTART: x0 = xk ; k = 0; compute P0 a preconditioner for J0

end while

15 of 34

Numerical problem

Bratu problem:

−Au = λD(u), D = diag(exp(u1), . . . ,exp(un))

where A is a matrix arising form a 2d or 3d discretization of the diffusion
equation on a unitary domain, and λ is a real parameter.

Matrices arising from discretization with 3D Finite Differences (FD), Mixed Finite
Elements (MFE) of the diffusion equation.

x0 = (1, . . . ,1)T .

Fortran code

16 of 34

2d MFE discretization, λ = 1

Matrix A with 28600 rows and 142204 nonzeros.
Mixed Finite Element discretization of the diffusion equation.

Table: Results on MFE matrix with B0 = ILU(0).

preconditioner kmax nlit iter cpu
tot precond

ILU(0)(J0) – 7 851 11.59 0.01
ILU(0)(Jk) – 7 754 8.65 0.04

RNB-ILU(0) 1 7 442 6.51 0.08
RNB-ILU(0) 2 7 470 6.56 0.06
RNB-ILU(0) 3 7 501 6.93 0.06
RNB-ILU(0) 5 7 529 7.09 0.06

NB-ILU(0) 6 515 9.67 0.06

17 of 34

2d MFE discretization, λ = 1

Matrix A with 28600 rows and 142204 nonzeros.
Mixed Finite Element discretization of the diffusion equation.

Table: Results on MFE matrix with B0 = AINV(0.1).

preconditioner kmax nlit iter cpu
tot precond

AINV(0.1) (J0) – 7 882 18.35 0.17
AINV(0.1) (Jk) – 7 908 19.70 1.27

RNB-AINV(0.1) 1 8 574 14.62 1.57
RNB-AINV(0.1) 2 7 517 13.07 0.81
RNB-AINV(0.1) 4 7 502 12.61 0.44

NB-AINV(0.1) 7 655 17.15 0.26

18 of 34

3d FE discretization

0 5 10 15 20

nonlinear iterations

0

20

40

60

80

lin
e

a
r

it
e

ra
ti
o

n
s

ILU(0)

RNB(2)

RNB(4)

19 of 34

Quasi-Newton preconditioners for sequences of linear systems

Recall Newton’s method for

F (x) = 0, F : Rn→ Rn

F ′(xk)sk = −F (xk)

xk+1 = xk + sk

Quasi-Newton methods construct a sequence of approximations of the Jacobians
Bk ≈ F ′(xk).

Each Bk is defined by a low-rank update of the previous matrix in the sequence Bk−1.

Most common Quasi-Newton formulæ

Broyden’s method: Bk+1 = Bk +
(yk −Bksk)sTk

sTk sk

SR1 (Symmetric Rank-1): Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

BFGS update: Bk+1 = Bk +
yky

T
k

yTk sk
−

Bksks
T
k Bk

sTk Bksk

Tuning property

All these updates satisfy the secant condition as they all satisfy

Bk+1sk = yk .

Consider now the following substitutions:

sk −→w, yk −→ Aw, Bk −→M0, Bk+1 −→M,

which transform the secant condition into

Mw = Aw,

We call this TUNING PROPERTY.

The preconditioner M acts as the coefficient matrix A in at least one direction.
or, equivalently

PAw = w,

The preconditioned matrix PA has at least one additional eigenvalue at 1.

21 of 34

Direct, inverse and block formulations

Broyden (nonsymmetric) update.

direct M = M0 +
(A−M0)wwT

wTw
Mw = Aw

inverse P = P0−
(P0Aw−w)wTP0

wTP0Aw
PAw = w

block P = P0− (P0AW −W)
(
WTP0AW

)−1
WTP0 PAW = W

SR1 (symmetric but not PD) update.

direct M = M0 +
uuT

wTu
, u = (A−M0)w

inverse P = P0−
zzT

zTAw
, z = P0Aw−w

block P = P0−Z
(
ZTAW

)−1
ZT , Z = P0AW −W

BFGS (SPD) update.

direct M = M0 +
AwwTA

wTAw
− M0wwTM0

wTM0w

inverse P =
wwT

wTAw
+

(
I − wwTA

wTAw

)
P0

(
I − AwwT

wTAw

)
block P = WΠ−1WT +HP0H

T Π = WTAW H = I −WΠ−1WTA

The BFGS sequence is SPD

The Broyden tuning strategy must be used for nonsymmetric problems, the BFGS
formula is well suited to accelerate the PCG method due to the following result:

Theorem
The preconditioner P yielded by the BFGS update formula is SPD provided P0 is so.

Proof.
For every nonzero x ∈ Rn we set z = HT x and u = WT x. Then we have

xTPx = (WT x)T Π−1(WT x) +xTHP0H
T x = uT Π−1u+zTP0z≥ 0.

the last inequality holding since both Π−1 and P0 are SPD matrices.

The inequality is strict since if u = 0 then WT x = 0 and hence

z = (I −AWΠ−1WT)x = x 6= 0.

23 of 34

When is the SR1 update SPD too?

Theorem
Let A be an SPD matrix and P0 and SPD preconditioner. If the columns of W are
eigenvectors corresponding to the p smallest eigenvalues of P0A, µj , j = 1, . . . ,p and

µj < 1, j = 1, . . . ,p then P = P0−Z
(
ZTAW

)−1
ZT is SPD.

Proof.
It is sufficient to prove that −ZTAW is SPD (Recall Z = W −P0AW).

Matrix W satisfies P0AW = WΘ, with Θ = diag(µ1, . . . ,µp).

P0AW = WΘ =⇒ P
1/2
0 AP

1/2
0︸ ︷︷ ︸

Â

P
−1/2
0 W︸ ︷︷ ︸

U

= P
−1/2
0 W︸ ︷︷ ︸

U

Θ =⇒ ÂU = UΘ.

Now Â is SPD so it has orthonormal eigenvectors (the columns of U). Hence

UTU = I =⇒ WTP−1
0 W = I =⇒ WTAW = Θ.

It follows that

−ZTAW = (W −P0AW)T AW = (I −Θ)WTAW = (I −Θ)Θ

is SPD.

Other approaches

Deflation.

Saad et al (2000) proposed a deflated version of the CG in which the follwing deflated
preconditioner is defined

H = I −W (WTAW)−1WTA

The action of this precondtioner is to put m eigenvalues to zero!

However all the CG residuals are forced to lie in the rank of H (no breakdown can
occurr).

Saad, Y. and Yeung, M. and Erhel, J. and Guyomarch, F.,
A deflated version of the conjugate gradient algorithm,
SIAM J. Sci. Comput., 2000

25 of 34

Spectral Preconditioners

Given a full-rank rectangular (tall) matrix W and an initial preconditioner P0, the
preconditioner P is defined as

P = P0 +W (WTAW)−1WT

The action of this preconditioner, if W contain the approximate eigenvectors
corresponding to the smallest eigenvalues, is to add 1 to these eigenvalues

Assume P0AW = WΛ then

(PA)W = (P0A)W +W (WTAW)−1WTAW = WΛ +W = W (Λ + I).

B. Carpentieri and I. S. Duff and L. Giraud,
A class of spectral two-level preconditioners,
SIAM J. Sci. Comput., 2003

26 of 34

Choice of the vectors {wj}.

In all cases: optimal choice for columns of W : the eigenvectors of the preconditioned
matrix P0A corresponding to the smallest eigenvalues.

Shall we compute these eigenvector accurately?

To test this we used perturbed eigenvectors i.e. satisfying ‖P0Awj −µjwj‖ ≈ δ .

Coefficient matrix

A = d e l s q (numgrid (’ L ’ , 50 0)) ;

which returns a sparse matrix of order n = 186003.

The linear system Ax = b, with b a random uniformly distributed vector, has been
solved by the PCG method with various low-rank update techniques with P0 = IC(0).

no update tuned deflated spectral
exact 466 254 254 254
δ = 0.01 466 261 259 290
δ = 0.05 466 378 260 286

Notable improvement of number of iterations even with badly approximated
eigenvectors (the tuned version being more sensitive to accuracy).

27 of 34

Can we use different vectors?

What if one uses eigenvectors of A as columns of W ?

Again we use either exact eigenvectors or vectors satisfying ‖Awj −λjwj‖ ≈ δ .

no update tuned deflated spectral
exact 466 254 254 254
δ = 10−3 466 296 296 297
δ = 0.01 466 362 361 369

With exact eigenvectors there is still an important reduction of the number of
iterations. Why?

28 of 34

An experimental answer

Usually IC/ILU preconditioners leave almost unchanged the eigenvectors corresponding
to the smallest eigenvalues (though increasing the latter ones).

Compare the eigenpairs (λj ,vj) of A, with those of the preconditioned matrix with two
choices of P0:

IC(0) (µP1
j ,vP1

j)

IC(1e−2) (µP2
j ,vP2

j) .

Eigenvalues and angle between eigenvectors of A and IC-preconditioned A.

j ∠
(
vj ,v

P1
j

)
∠
(
vj ,v

P2
j

)
1 1.7445e-05 2.6952e-04
2 3.6118e-05 4.3401e-04
3 9.6668e-05 1.5363e-04
4 1.9743e-04 4.5222e-03
5 1.7449e-04 4.9131e-03

29 of 34

Recovering the leftmost eigenpairs

Lanczos’ method

As known Lanczos’ method aims at computing the extremal eigenvalues of an SPD
matrix A by constructing an orthogonal basis of the Kryov subspace generated by A
and a given initial vector q1.

Matrix Q defined as
Qm =

[
q1 q2 · · ·qm

]
satisfies

QT
mAQm = Tm

where Tm is a tridiagonal matrix of size m. (why does this remind me GMRES? in
that case we had VT

m AVm = Hm.)

Finally some of the extremal eigenvalues are approximated by the extremal eigenvalues
of the “small” matrix Tm.

30 of 34

PCG-Lanczos connection

A simple way to recover some of the extremal eigenpairs of the preconditioned matrix
is to exploit the so called Lanczos connection (Golub and van Loan, Matrix
Computations).

During the PCG method, preconditioned with P0, it is possible to save the first m
(scaled) preconditioned residuals as columns of a matrix Vm:

Vm =

[
P0r0√
rT0 P0r0

,
P0r1√
rT1 P0r1

, . . . ,
P0rm−1√

rTm−1P0rm−1

]
=

[
z0√
ρ0

,
z1√
ρ1

, . . . ,
zm−1√
ρm−1.

]
.

Note all these vectors an scalars are computed during PCG. No additional cost.

Matrix Vm satisfies VT
m P−1

0 Vm = Im.

31 of 34

Implicit Lanczos method within PCG

The Lanczos tridiagonal matrix can be formed using the PCG coefficients αk ,βk :

Tm =



1

α0
−
√

β1

α0

−
√

β1

α0

1

α1
+

β1

α0
−
√

β2

α1

. . .

−
√

βm−1

αm−2

−
√

βm−1

αm−2

1

αm−1
+

βm−1

αm−2


Matrices Vm and Tm obey to the classical Lanczos relation i.e.:

VT
m AVm = Tm.

Practically during PCG:

1 Collect m = 50,70,100 preconditioned residuals, and Tm.

2 Eigensolve Tm obtaining Tm = QΛmQ
T .

3 Select the p smallest eigenvalues and eigenvectors Qp = Q(1 : p).

4 Project the small matrix Qm to obtain approximation of the eigenvectors of A:
Wp = VmQp 32 of 34

Remarks

This procedure can be implemented to a very little computational cost but it has
a number of disadvantages:

First, it requires the storage of m preconditioned residuals,

Second, as the convergence for the Lanczos process to the smallest eigenvalues is
relatively slow, it sometimes happens that PCG convergence takes place before
eigenvector convergence.

Third, some of the leftmost eigenpairs can be missing by the non-restarted
Lanczos procedure.

Remedy to drawbacks 2 and 3

If a sequence of linear systems has to be solved then the eigeninformation for matrix
P0A can be refined during the first linear systems and then used for the next ones.

Stathopoulos, A. and Orginos, K.
Computing and deflating eigenvalues while solving multiple right-hand side linear
systems with an application to quantum chromodynamics
SIAM Journal on Scientific Computing

33 of 34

Exercise

Implementation of the SR1 update within the Matlab PCG.

P = P0−Z
(
ZTAW

)−1
ZT , Z = P0AW −W

f u n c t i o n z = s r 1 (x , L , Z ,H)
y = L ’\ (L\x) ;
u = Z’∗ x ;
u = H∗u ;
z = y − Z∗u ;

Approximation of the leftmost eigenpairs of P0A by solving the generalized
eigenproblem Ax = λ(LLT)x by function eigs.

[W, Lambda] = e i g s (A, L∗L ’ , p , ’ sm ’ , ’ t o l e r a n c e ’ ,1 e−3) ;

Preprocessing

Z = L ’\ (L\(A∗W))−W;
H = i n v (W’∗ (A∗Z)) ;

Invoking the PCG with a function handle as the preconditioner

[x , f , r e l , i t , resvecTUN] = pcg (A, b , TOL, MAXIT, @(x) s r 1 (x , L , Z ,H)) ;

34 of 34

	Notes on implementation
	Algorithms
	Numerical results
	Tuned preconditioners: derivation

