1. Data l'equazione

$$x = g(x)$$
, dove $g(x) = \sqrt{x^2 - 2.6x + 2}$

(a) Se ne calcoli la soluzione vera.

Soluzione. Si nota che il radicando è sempre positivo, quindi con il vincolo $x \ge 0$ si può elevare al quadrato ogni termine di x = g(x), ottenendo:

$$x^2=x^2-2.6x+2 \rightarrow x=\xi=1/1.3=0.7692308$$
 (positivo, quindi accettabile)

(b) Si calcoli la costante asintotica del metodo di punto fisso $x_{k+1} = g(x_k)$ e si dica perché il metodo converge localmente alla soluzione. Si determini il più grande intervallo di convergenza del metodo di punto fisso.

Soluzione. La derivata prima è:

$$g'(x) = \frac{x - 1.3}{\sqrt{x^2 - 2.6 x + 2}}$$

Il valore di g'(x) nel punto fisso vale $g'(\xi) = -0.69$, quindi si verifica che $|g'(\xi)| < 1$ e lo schema di punto fisso converge localmente. Inoltre, si osserva che:

$$[g'(x)]^2 = \frac{x^2 - 2.6x + 1.69}{x^2 - 2.6x + 2} < 1 \quad \forall x \in \mathbb{R}, \text{ in quanto } 1.69 < 2$$

perciò $[g'(x)]^2 < 1$ e -1 < g'(x) < 1, quindi lo schema converge partendo da ogni punto in \mathbb{R} .

(c) A partire dal punto iniziale $x_0 = 1$ si eseguano 3 iterazioni con il metodo di punto fisso. Usando gli errori stimare sperimentalmente la costante asintotica.

Soluzione. La terza iterazione di punto fisso è $x_3 = 0.7039429$. Con gli errori si può stimare la costante asintotica come $M_{PF} = |x_3 - \xi|/|x_2 - \xi| = 0.6526778$.

(d) A partire da $x_0 = 0.9$ si eseguano due iterazioni con il metodo di Newton-Raphson applicato ad un'opportuna equazione. Stimare la costante asintotica M_{NR} del metodo. Mediante M_{NR} e gli scarti, stimare l'errore alla seconda iterazione e confrontarlo con l'errore vero.

Soluzione. Una possibile equazione si ricava semplicemente dalla funzione di punto fisso come $f(x) = x - g(x) = x - \sqrt{x^2 - 2.6 x + 2}$. La seconda iterazione di Newton-Raphson applicato a f(x) = 0 è $x_2 = 0.7692265$. Attraverso gli scarti, si può stimare la constante asintotica $M_{NR} = |x_2 - x_1|/|x_1 - x_0|^2 = 0.2534$. La stima dell'errore attraverso gli scarti è $\varepsilon_2 = M_{NR}s_2^2 = 5.475 \times 10^{-6}$, mentre l'errore vero è $\varepsilon_{2,v} = |x_2 - \xi| = 4.317 \times 10^{-6}$. Come atteso, l'errore vero e la stima sono vicini (stesso ordine di grandezza).

2. Al variare di un parametro reale α si definisce il sistema lineare Ax = b dove

$$A = \begin{bmatrix} 3 - \alpha & 2 & \alpha^2 - 1 \\ 2 & 10 & -3 \\ \alpha^3 + 1 & -3 & 6 + \alpha \end{bmatrix} \qquad b = \begin{bmatrix} 8 \\ 19 \\ -1 \end{bmatrix}$$

(a) Si dica per quale valore del parametro α la matrice A è biciclica e coerentemente ordinata. Per il resto dell'esercizio si usi il valore di α appena trovato.

Soluzione. L'unico valore di α che consente di avere una matrice tridiagonale, e quindi biciclica e coerentemente ordinata, è $\alpha = -1$. Con tale valore, la matrice è:

$$A = \begin{bmatrix} 4 & 2 & 0 \\ 2 & 10 & -3 \\ 0 & -3 & 5 \end{bmatrix}$$

(b) Si dimostri che A è definita positiva e se ne calcoli la fattorizzazione di Cholesky. Usando la fattorizzazione si risolva il sistema lineare e si calcoli det A^{-1} .

Soluzione. La matrice è diagonalmente dominante in senso stresso, con elementi diagonali positivi, quindi tutti gli autovalori sono positivi e la matrice è definita positiva. La fattorizzazione di Cholesky è:

$$M = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & -1 & 2 \end{bmatrix}$$

Sapendo che $A=MM^T,$ si può risolvere il sistema lineare con sostituzioni in avanti e indietro, infatti:

$$Ax = b \rightarrow \begin{cases} My = b \\ M^T x = y \end{cases}$$
 ottenendo $x = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$.

(c) Si dica perché il metodo di Gauss-Seidel converge alla soluzione di Ax=b e, a partire dal vettore iniziale $x^{(0)}=\begin{bmatrix}1.5 & 1.75 & 0.85\end{bmatrix}^T$, si esegua una iterazione con tale metodo. Usando la norma infinito degli errori, si stimi sperimentalmente la costante asintotica.

Soluzione. Il metodo di Gauss-Seidel converge perché la matrice è simmetrica e definita positiva. Dopo un'iterazione si ottiene $x^{(1)} = \begin{bmatrix} 1.1250 & 1.9300 & 0.9580 \end{bmatrix}^T$. Con le norme infinito si stima la costante asintotica come $M_{GS} = \|x^{(1)} - x\|_{\infty} / \|x^{(0)} - x\|_{\infty} = 0.2500$.

(d) Sapendo che lo spettro della matrice di iterazione di Gauss-Seidel è $\{0,\,0,\,0.28\}$, si dica perché è possibile determinare l' ω ottimo e quindi lo si calcoli. Si calcoli infine la velocità di convergenza del metodo SOR con ω ottimo.

Soluzione. La matrice è biciclica e coerentemente ordinata, quindi vale il teorema di Young-Varga, inoltre gli autovalori delle matrici di iterazione di Jacobi e Seidel sono uno la radice dell'altro. Se gli autovalori di Seidel sono non negativi, quelli di Jacobi sono reali, perciò si può calcolare ω ottimo secondo la formula

$$\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho_{GS}}} = 1.081942$$

La velocità di convergenza è $R_{\omega} = -\log_{10}(\omega_{opt} - 1) = 1.086494$.

3. Si vuole calcolare l'integrale

$$I = \int_{1}^{4} \left(\frac{x^4}{12} + e^{-x} - 1\right) dx, \qquad I_v = 14.39956.$$

(a) Determinare il numero minimo di sottointervalli n in cui dividere l'intervallo [1,4] in modo da approssimare I con la formula di Cavalieri-Simpson composta con un errore (in modulo) inferiore a 5×10^{-3} .

Soluzione. La formula dell'errore di Cavalieri-Simpson è:

$$E = \left| \frac{(b-a)^5}{2880n^4} f^{IV}(\xi) \right| < \left| \frac{(b-a)^5}{2880n^4} M \right|$$

La derivata quarta $f^{IV}(x) = 2 + e^{-x}$ (funzione positiva e descrescente in tutto \mathbb{R}) ha un massimo per x = 1, con valore pari a M = 2.3679. Conoscendo tutti i valori, si può risolvere la disuguaglianza $E < 5 \times 10^{-3}$ e trovare n = 2.51, quindi servono 3 sottointervalli.

(b) Usando il valore di n trovato al punto precedente si approssimi I con la formula di Cavalieri-Simpson composta. Chiamare tale approssimazione I_n .

Soluzione. Il valore è $I_3 = 14.40176$.

- (c) Si calcoli l'errore in valore assoluto $|I_v I_n|$ e si commenti il risultato ottenuto. **Soluzione**. L'errore è pari a $E_3 = |I_v I_3| = 2.467 \times 10^{-3}$. Si conferma che l'errore è inferiore al valore richiesto (5×10^{-3}) .
- (d) Si determini ora I_1 , il valore approssimato di I con la formula di Cavalieri-Simpson **semplice**. A partire da I_1 e dal valore I_n trovato prima, si fornisca una nuova e più accurata approssimazione dell'integrale (I_R) usando l'estrapolazione di Richardson. Calcolare l'errore $E_R = |I_v I_R|$. **Soluzione**. Il valore è $I_1 = 14.57602$. L'estrapolazione di Richardson per il caso in qui la suddivisione passa da 1 a 3 sottointervalli è

$$I_R = I_3 + \frac{(I_3 - I_1)}{80} = 14.39959$$

L'errore è $E_R = 2.684 \times 10^{-5}$.

4.

(d) L'errore di interpolazione in qualunque punto (e quindi anche in 0.88) è zero perchè la derivata quinta della funzione (che è un polinomio di grado 4) è zero. Inoltre il polinomio interpolante di un polinomio di grado 4 coincide con la funzione da interpolare.