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Summary

Nonlinear systems of equations. A few examples

Newton’s method for f (x) = 0.

Newton’s method for systems.

Local convergence. Exit tests.

Global convergence.Backtracking. Line search algorithms

Two computationally useful variants: the Inexact Newton method and the Quasi
Newton method.
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Sistemi di equazioni non lineari

Some examples

Intersection of curves in Rn.
Find the intersections between the circumference and the hyperbola:{

x2 +y2 = 4
xy = 1

Equation describing the flow in porous media (Richards’ equation):

∂ψ

∂ t
−~∇ ·

(
K(ψ)~∇ψ

)
= f (1)

Function minimization (applications in data science, machine learning)

minG(x) =⇒ Solve G ′(x) = 0
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Newton’s method

Given a function f ∈ C1, we aim at finding one solution of the equation

f (x) = 0

Given xk , an approximation to the solution ξ , we correct it to find xk+1 = xk + s

We impose the condition f (xk+1) = 0 and expand f (xk+1) in Taylor series neglecting the
terms of order greater or equal than 2.

0 = f (xk+1) = f (xk) + sf ′(xk)

from which

s =− f (xk)

f ′(xk)
.

The Newton’s method can therefore be written as

xk+1 = xk −
f (xk)

f ′(xk)
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Newton’s method for system of nonlinear equations

Let us now solve the following nonlinear system
F1(x1,x2, · · · ,xn) = 0
F2(x1,x2, · · · ,xn) = 0
. . . = 0
Fn(x1,x2, · · · ,xn) = 0

(2)

more synthetically
F (x) = 0

where

F =


F1

F2

· · ·
Fn

 x =


x1

x2

· · ·
xn


Let us assume that F be differentiable in an open subset of Rn.
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Newton’s method for system of nonlinear equations

As in the scalar case, we try to correct an approximation xk as xk+1 = xk + s.

Let us impose F (xk+1) = 0 and as before expand in Taylor series the function F (xk+1).

0 = F (xk+1) = F (xk) +F ′(xk)s

where F ′(xk) is the Jacobian of system (7) evaluated in xk i. e.(
F ′(x)

)
ij =

∂Fi
∂xj

(x)

As before the problem is to compute the increment s which is now a vector of n
components.

s =−
(
F ′(xk)

)−1F (xk)

The kth iteration of the Newton’s method is thus written as

xk+1 = xk −
(
F ′(xk)

)−1F (xk)
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Newton’s method for system of nonlinear equations

Some observations:

The Jacobian matrix F ′(xk) must be invertible.

Local convergence of the Newton’s method can be proved provided that the initial
approximation x0 is sufficiently close to the solution.

Computation of xk+1 starting from xk requires inversion of (possibly large and
sparse) Jacobian matrix. This operation is inefficient as known. In practice vector s
is evaluated by solving the following linear system

F ′(xk)s =−F (xk)

F ′ is often non symmetric, so GMRES iterative method is suggested for the solution
of the Newton system
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Algorithm

Let us write a first version of the Algorithm, by taking into account previous comments.

Newton Algorithm

Given an initial approximation x0 , k := 0.

repeat until convergence

solve: F ′(xk )s =−F (xk )

xk+1 := xk + s

k := k + 1
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Newton method:convergence

Standard Assumptions.

Equation (1) has a unique solution which we denote with x∗.

The Jacobian F ′ is Lipschitz continuous. There exists a real scalar γ such that

‖F ′(y)−F ′(x)‖ ≤ γ‖y −x‖

F ′(x∗) is nonsingular.

Notations. Let us define:

the error at the iteration k: ek = xk −x∗

Theorem

There exists δ > 0 such that

‖e0‖< δ =⇒ ‖ek+1‖ ≤ K‖ek‖2

with
K = γ‖(F ′(x∗))−1‖
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Proof of Newton convergence

We premise the following

Theorem

Let F be differentiable in an open set Ω ∈ Rn, and x∗ ∈Ω. Then for x ∈Ω sufficiently
close to x∗

F (x)−F (x∗) =
∫ 1

0
F ′((x∗+ t(x−x∗))(x−x∗)dt

Proof.

Let g(t) = F ((x∗+ t(x−x∗)). Using the chain rule

g ′(t) = F ′((x∗+ t(x−x∗))(x−x∗)

Hence by the Fundamental Theorem of Calculus

g(1)−g(0) =
∫ 1

0
g ′(t)dt = F (x)−F (x∗).
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Proof of Newton convergence

We now need two further results. The first one is also known as Banach Lemma

Lemma

Let A,B square n×n matrices, and B such that ‖I −BA‖< 1. Then A,B are both
nonsingular and

‖A−1‖ ≤ ‖B‖
1−‖I −BA‖

.

Lemma

Let the standard assumptions hold. Then there is δ > 0 so that for all
x ∈B(δ ) = {x : ‖x−x∗‖< δ} the following hold true:

‖F ′(x)‖ ≤ 2‖F ′(x∗)‖ (3)

‖F ′(x)−1‖ ≤ 2‖F ′(x∗)−1‖ (4)
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Proof of Newton convergence

Proof.

(3). By triangular inequality and Lipschitz continuity

‖F ′(x)‖−‖F ′(x∗)‖ ≤ ‖F ′(x)−F ′(x∗)‖ ≤ γ‖x−x∗‖= γ‖e‖ ≤ γδ .

Now if δ <
‖F ′(x∗)‖

γ
then ‖F ′(x)‖ ≤ ‖F ′(x∗)‖+ γδ ≤ 2‖F ′(x∗)‖ .

(4). Choosing now δ <
1

2γ‖F ′(x∗)−1‖
then

‖I −F ′(x∗)−1F ′(x)‖= ‖F ′(x∗)−1‖‖F ′(x∗)−F ′(x)‖ ≤ ‖F ′(x∗)−1‖γ‖e‖ ≤ 1

2
.

Then applying Banach’s Lemma

‖F ′(x)−1‖ ≤ ‖F ′(x∗)−1

1−‖I −F ′(x∗)−1F ′(x)‖
≤ ‖F

′(x∗)−1‖
1−1/2

= 2‖F ′(x∗)−1‖.
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Proof of Newton convergence

We are now able to prove the main theorem.

Proof.

Let δ be smaller enough so that the previous Lemma holds.

ek+1 = xk+1−x∗ = xk −x∗−F ′(xk)−1F (xk)

= ek −F ′(xk)−1
∫ 1

0
F ′((x∗+ t(xk −x∗))ekdt

= F ′(xk)−1
∫ 1

0

(
F ′(xk)−F ′((x∗+ t(xk −x∗))

)
ekdt.

Taking norms and again using Lipschitz continuity

‖ek+1‖ ≤ ‖F ′(xk)−1‖
∫ 1

0
γ‖xk −x∗− t(xk −x∗)‖‖ek‖dt

= ‖F ′(xk)−1‖γ‖ek‖2
∫ 1

0
(1− t)dt = γ‖F ′(x∗)−1‖‖ek‖2 = K‖ek‖2.
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Exit test

Ideal exit test ‖ek‖< ε (absolute error)

or ‖ek‖< ε‖e0‖ (relative error); where ε is a prescribed tolerance.

As however x∗ is not known

Exit test on the relative residual. Stop when

‖F (xk)‖
‖F (x0)‖

< ε

Exit test on the difference. Stop when

‖s‖= ‖xk+1−xk‖< ε
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Exit tests

Motivations

Test on the residual. It can be proved that for a sufficiently small δ

1

4κ

‖ek‖
‖e0‖

≤ ‖F (xk)‖
‖F (x0)‖

≤ 4κ
‖ek‖
‖e0‖

where κ = ‖F ′(x∗)‖‖(F ′(x∗))−1‖ is the condition number of F ′(x∗).

If F ′(x∗) is well-conditioned (κ ≈ 1), the test is reliable.

Test on the difference

xk+1−xk = xk+1−x∗+x∗−xk = ek+1− ek

‖xk+1−xk‖ = ‖ek‖+O(‖ek‖2)

The difference at step k + 1 is of the same order of magnitude as the error at step k.
(Pessimistic test)
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Example

{
x2 +y2−4 = 0
xy −1 = 0

x(0) =

(
0
1

)

k x
(k)
1 x

(k)
2 ‖e(k)‖ ‖x(k+1)−x(k)‖ ‖e(k+1)‖

‖e(k)‖2

0 0.000000000 1.000000000 0.107×10+01

1 1.000000000 2.500000000 0.745×10+00 0.180×10+01 0.655899
2 0.595238095 2.011904761 0.111×10+00 0.634×10+00 0.200716
3 0.520020336 1.934236023 0.337×10−02 0.108×10−00 0.271153
4 0.517640404 1.931853966 0.327×10−05 0.337×10−02 0.288114
5 0.517638090 1.931851652 0.309×10−11 0.327×10−05 0.288656

‖F (x(0))‖= 3.16 ‖F (x(1))‖= 3.58
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Global Convergence

Convergence of Newton’s method not guaranteed. Frequently Newton’s step moves
away from the solution

To avoid divergence we accept Newton’s step if the following condition holds:
‖F (xk+1)‖< ‖F (xk)‖
If the above condition is not satisfied, then the Newton step is reduced =⇒
“backtracking” or “linesearch”.

Algorithm: Newton 2.

Given an initial approximation x0 , k := 0.

repeat until convergence
solve: F ′(xk )s =−F (xk )

• x t := xk + s
if ‖F (x t)‖< ‖F (xk )‖ then xk+1 := x t
else s := s/2, go to (• )

k := k + 1
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Esempio
Newton con backtracking{

x2 +y2−4 = 0
xy −1 = 0

x(0) =

(
0
1

)

k x
(k)
1 x

(k)
2 ‖e(k)‖ x(k+1)−x(k) ‖e(k+1)‖

‖e(k)‖2

0 0.000000000 1.000000000 0.106597×10+01

1 0.500000000 1.750000000 0.182705×10+00 0.901388E+01 0.160790

‖F (x(0)))‖= 3.16 ‖F (x(1))‖= 0.699

0 0.5 1 1.5 2
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Inexact Newton Methods (Hint)

Idea: Avoid Oversolving linear systems when too far from the nonlinear solution.

Example. FE Steady-state Richards Equation

A(ψ)ψ = b(ψ), F (x) = A(x)x−b(x), F ′ = A+
∂ (A)

∂x
x

F ′ inherit the same size and sparsity of A.

Generic Newton iteration:
Solve: F ′(xk )s =−F (xk )
xk+1 := xk + s
k := k + 1

We want to solve the linear system by an iterative method with variable tolerance.

‖F ′(xk)s+F (xk)‖ ≤ ηk‖F (xk)‖

ηk can be “large” at the beginning of Newton iteration and must be small towards
the end.

If ηk → 0 then Newton convergence is è superlinear.

If ηk = O(‖F (xk)‖) then again quadratic convergence can be proved.
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Quasi-Newton Methods

Motivation: Jacobian matrix

Not always explicitly available (sometimes function F is known as a set of data)

or

Differentiation of F may be too costly to be afforded at every Newton iteration

A possible answer to this problem is given by the quasi-Newton methods which compute
a sequence of approximate Jacobians possibly starting from the ’true’ initial Jacobian.

Instead of solving
xk+1 = xk −F ′(xk)−1F (xk)

we solve
xk+1 = xk −B−1

k F (xk)
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Quasi-Newton Methods

Sequence of Bk can be constructed in many ways. The simplest approach is due to
Broyden:

Bk+1 = Bk +
(y −Bk s)sT

sT s
= Bk +

F (xk+1)sT

sT s

where y = F (xk+1)−F (xk) and using Bk sk =−F (xk).

The Broyden update formula satisfies:

1 the secant condition, namely Bk+1s = y .

2 Bk+1 is the closest matrix to Bk in the Frobenius norm among all the matrices
satisfying the secant condition.

Bk+1 =
argmin
B : Bs = y

‖B−Bk‖

NOTE: Frobenius norm of a matrix is defined as

‖A‖F =
√

∑
i

∑
j

a2
ij = tr(ATA)
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Quasi-Newton Methods

The secant condition Bk+1s = y is a generalization of the secant method (Regula falsi):

xk+1 = xk −
f (xk)

bk

where

bk =
f (xk)− f (xk−1)

xk −xk−1
=

y

s
.

In n dimension, the secant condition has an infinite number of solutions.

Broyden’s choice satisfies secant condition, in fact

Bk+1s = Bk s +
(y −Bk s)sT

sT s
s = Bk s +y −Bk s = y .

Broyden’s choice satisfies the least change condition.

‖Bk+1−Bk‖ =

∥∥∥∥ (y −Bk s)sT

sT s

∥∥∥∥
F

=

∥∥∥∥ (Bs−Bk s)sT

sT s

∥∥∥∥
F

=

=

∥∥∥∥ (B−Bk)ssT

sT s

∥∥∥∥
F

≤ ‖B−Bk‖F

∥∥∥∥ ssTsT s

∥∥∥∥
F

= ‖B−Bk‖F .

using
∥∥∥ ssTsT s

∥∥∥
F

= 1 (proof by exercise).
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Convergence Results

Definition

A sequence {xk} converges superlinearly to x∗ if there are α > 1 and K > 0 such that

‖xk+1−x∗‖ ≤ K‖xk −x∗‖α

Let us now define the error in jacobian approximations:

Ek = Bk −F ′(x∗)

The first Theorem states that the difference between the exact and the approximate
Jacobian does not grow with the Newton iteration. This property is also called bounded
deterioration.

Theorem

‖Ek+1‖ ≤ ‖Ek‖+
γ

2
(‖ek‖+‖ek+1‖)
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Convergence Results and implementation

Theorem

Let the standard assumption holds. Then there are δ and δB such that if ‖e0‖< δ and
‖E0‖< δB the Broyden sequence exists and xn→ x∗ superlinearly.

This theorem states that we can make ‖Ek‖ as small as we want by properly choosing
the initial vector x0 and the initial Jacobian approximation B0.

If it is the case, the convergence of the iteration remains very fast (superlinear
convergence).

Problem.
How to implement solution of Newton system with B−1

k instead of J(xk)−1 ?
Note that even if B0 is sparse B1 is not.

Careful implementation should avoid inversion of dense matrices.
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Sparse implementation of Broyden method: Sherman Morrison formula.

Theorem

(B +uvT )−1 =

(
I − (B−1u)vT

1 +vTB−1u

)
B−1 = B−1− (B−1u)vTB−1

1 +vTB−1u

Proof.

Let us look for the inverse of B +uvT as B−1 +xyT . The following conditions must hold:

(1) I = (B +uvT ) · (B−1 +xyT ) = I +uvTB−1 +BxyT +uvT xyT

(2) I = (B−1 +xyT ) · (B +uvT ) = I +xyTB +B−1uvT +xyTuvT

Multiplying the first by u on the right and the second by vT on the left yields:

u
(
vTB−1u

)
+Bx(yTu) +u(vT xyTu) = 0 =⇒ x = αB−1u.

(vT x)yTB + (vTB−1u)vT + (vT xyTu)vT = 0 =⇒ y = βB−1v .

Without loss of generality set β = 1 hence substituting in (1) we obtain

0 = uvTB−1 + αuvTB−1 +uvT
αB−1uvTB−1 = uvTB−1

(
1 + α(1 +vTB−1u)

)
Finally we get α =

−1

1 +vTB−1u
which completes the proof.
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Sparse implementation of Broyden method

Need to compute B−1
k F (xk) without

1 Computing B−1
k since we do not want to invert matrices.

2 Computing Bk since it is dense.

In our context we need to evaluate B−1
k+1 in terms of B−1

k starting from

Bk+1 = Bk +ukvk ,

where we can define among the others

uk =
F (xk+1)

‖sk‖
, vk =

sk
‖sk‖

, so that
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Sparse implementation of Broyden method

B−1
k+1 = (Bk +ukv

T
k )−1 =

(
I −

(B−1
k uk)vTk

1 +vTk B−1
k uk

)
B−1
k

=
(
I −wkv

T
k

)
B−1
k

Where we have defined wk =
B−1
k uk

1 +vTk B−1
k uk

. Now by induction

B−1
k =

(
I −wk−1v

T
k−1

)(
I −wk−2v

T
k−2

)
· · ·
(
I −w0v

T
0

)
B−1

0
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Sparse implementation of Broyden method

Important results: sk =−B−1
k F k is accomplished by

1 Solving the system B0z0 =−F k

2 Computing α0 = wT
0 z0, then z1 = z0−α0w0

Computing α1 = wT
1 z1, then z2 = z1−α1w1

· · ·
Computing αk−1 = wT

k−1zk−1, then zk = zk−1−αk−1wk−1

Problem. We do not know how to compute w j , j = 1, · · · ,k−1. Let us define

p = B−1
k−1F (xk ) =

(
I −wk−2v

T
k−2

)
· · ·
(
I −w0v

T
0

)
B−1

0 F (xk )

It follows that

sk = −B−1
k F k =−

(
I −wk−1v

T
k−1

)
p = wk−1(vT

k−1p)−p

B−1
k−1uk−1 = B−1

k−1

F k

‖sk−1‖
=

p

‖sk−1‖

wk−1 =
B−1
k−1uk−1

1 +vT
k−1B

−1
k−1uk−1

=
p

‖sk−1‖+vT
k−1p
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Sparse implementation of Broyden method

Now combining sk = wk−1(vTk−1p)−p with wk−1 =
p

‖sk−1‖+vTk−1p
we obtain

‖sk−1‖wk−1 = p−wk−1v
T
k−1p =−sk

hence
wk−1 =− sk

‖sk−1‖

Hence B−1
k can be written in terms of sequence {s j} only as

B−1
k =

k−1

∏
j=0

(I −w jv j ) =
k−1

∏
j=0

(
I +

s j+1s
T
j

‖s j‖2
2

)

NOTE: We know sk as a function of B−1
k and B−1

k as a function of sk .
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Sparse implementation of Broyden method

Let us write sk+1 as

sk+1 =−B−1
k+1F k+1 = −

(
I +

sk+1s
T
k

‖sk‖2
2

)
k−1

∏
j=1

(
I +

s j+1s
T
j

‖s j‖2
2

)
B−1

0 F k

= −

(
I +

sk+1s
T
k

‖sk‖2
2

)
B−1
k F k+1

or

sk+1 =−B−1
k F k+1− sk+1

sTk B−1
k F k+1

‖sk‖2
2

Finally solve for sk+1 to obtain

sk+1 =
−B−1

k F k+1

1 + sTk B−1
k F k+1/‖sk‖2

2
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Broyden Algorithm (sketch)

INPUT: x0,B0. Set k := 0,x := x0.

First step: Solve B0s0 =−F (x0)

repeat until convergence

x := x + sk

Solve B0z =−F (x)

k := k + 1.

for j := 0 to k−1

z := z + s j+1

sTj z

‖s j‖2
2

end for

sk+1 :=
z

1− sTk z/‖sk‖2
2

end repeat

1 Only a system with B0 needed to be solved at each Newton step.

2 k scalar products and 1 vector norm at k-th step. Complexity increasing with k.
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